scispace - formally typeset
Search or ask a question
Institution

Cochin University of Science and Technology

EducationKochi, Kerala, India
About: Cochin University of Science and Technology is a education organization based out in Kochi, Kerala, India. It is known for research contribution in the topics: Thin film & Natural rubber. The organization has 5382 authors who have published 7690 publications receiving 103827 citations. The organization is also known as: CUSAT & Cochin University.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the degree of anthropogenic influence on heavy metal concentration in the sediments of the mangrove and adjacent estuarine stations using enrichment factor and geoaccumulation index was assessed.
Abstract: Heavy metals in the surface sediments of the two coastal ecosystems of Cochin, southwest India were assessed. The study intends to evaluate the degree of anthropogenic influence on heavy metal concentration in the sediments of the mangrove and adjacent estuarine stations using enrichment factor and geoaccumulation index. The inverse relationship of Cd and Zn with texture in the mangrove sediments suggested the anthropogenic enrichment of these metals in the mangrove systems. In the estuarine sediments, the absence of any significant correlation of the heavy metals with other sedimentary parameters and their strong interdependence revealed the possibility that the input is not through the natural weathering processes. The analysis of enrichment factor indicated a minor enrichment for Pb and Zn in mangrove sediments. While, extremely severe enrichment for Cd, moderate enrichment for Zn and minor enrichment of Pb were observed in estuarine system. The geo accumulation index exhibited very low values for all metals except Zn, indicating the sediments of the mangrove ecosystem are unpolluted to moderately polluted by anthropogenic activities. However, very strongly polluted condition for Cd and a moderately polluted condition for Zn were evident in estuarine sediments.

50 citations

Journal ArticleDOI
TL;DR: In this paper, a natural kaolinitic clay from Padappakkara mine of Quilon District of Kerala, India, has been metakaolinized at 550°C and activated separately with H2SO4, HNO3 and HClO4 of varying concentrations.

50 citations

Journal ArticleDOI
TL;DR: The strong stratification of the Bay of Bengal (BoBWB) causes rapid variations in sea surface temperature (SST) that influence the development of monsoon rainfall systems as discussed by the authors.
Abstract: The strong stratification of the Bay of Bengal (BoB) causes rapid variations in sea surface temperature (SST) that influence the development of monsoon rainfall systems. This stratification...

50 citations

Journal ArticleDOI
18 Mar 2019
TL;DR: Lysqdvp001 is the best-characterized endolysin with lytic activity against multiple species of Vibrios, and is the major focus of this mini review.
Abstract: Vibrio alginolyticus and V. parahaemolyticus, the causative agents of Vibriosis in marine vertebrates and invertebrates, are also responsible for fatal illnesses such as gastroenteritis, septicemia, and necrotizing fasciitis in humans via the ingestion of contaminated seafood. Aquaculture farmers often rely on extensive prophylactic use of antibiotics in farmed fish to mitigate Vibrios and their biofilms. This has been postulated as being of serious concern in the escalation of antibiotic resistant Vibrios. For this reason, alternative strategies to combat aquaculture pathogens are in high demand. Bacteriophage-derived lytic enzymes and proteins are of interest to the scientific community as promising tools with which to diminish our dependency on antibiotics. Lysqdvp001 is the best-characterized endolysin with lytic activity against multiple species of Vibrios. Various homologues of Vibrio phage endolysins have also been studied for their antibacterial potential. These novel endolysins are the major focus of this mini review.

50 citations

Journal ArticleDOI
TL;DR: In this article, a single layer electromagnetic wave absorber was designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands.
Abstract: Flexile single layer electromagnetic wave absorbers were designed by incorporating appropriate amounts of carbon black in a nitrile butadiene rubber matrix along with an optimized amount of magnetic counterpart, namely, barium hexaferrite for applications in S, C, and X-bands. Effective dielectric permittivity and magnetic permeability were measured using cavity perturbation method in the frequency range of 2–12 GHz. The microwave absorbing characteristics of the composites were studied in the S, C, and X-bands employing a model in which an electromagnetic wave is incident normally on a metal terminated single layer. Reflection loss exceeding −20 dB is obtained for all the samples in a wide frequency range of 2–12 GHz when an appropriate absorber thickness between 5 and 9 mm is chosen. The impact of carbon black is clearly observed in the optimized composites on the mechanical strength, thickness, band width of absorption, dielectric properties, and absorptivity.

50 citations


Authors

Showing all 5433 results

NameH-indexPapersCitations
Pulickel M. Ajayan1761223136241
Maxime Dougados134105469979
Sabu Thomas102155451366
Philippe Ravaud10161841409
David P. Salmon9941943935
Jérôme Bertherat8543824794
Luc Mouthon8456426238
Xavier Bertagna7428518738
Alfred Mahr7322922581
Nicolas Roche7262922845
Charles Chapron7137818048
Benoit Terris6123413353
François Goffinet6053214433
Xavier Puéchal6031613240
Pascal Laugier5848210518
Network Information
Related Institutions (5)
Indian Institute of Technology Kharagpur
38.6K papers, 714.5K citations

90% related

Indian Institutes of Technology
40.1K papers, 652.9K citations

90% related

Banaras Hindu University
23.9K papers, 464.6K citations

89% related

University of Delhi
36.4K papers, 666.9K citations

89% related

Panjab University, Chandigarh
18.7K papers, 461K citations

89% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202318
2022106
2021753
2020613
2019503
2018439