scispace - formally typeset
Search or ask a question
Institution

GE Healthcare

CompanyMadrid, Spain
About: GE Healthcare is a company organization based out in Madrid, Spain. It is known for research contribution in the topics: Imaging phantom & Iterative reconstruction. The organization has 4181 authors who have published 6324 publications receiving 156358 citations. The organization is also known as: GE Medical Systems.


Papers
More filters
Journal ArticleDOI
TL;DR: In a series of 51 patients with chest CT and real-time polymerase chain reaction assay (RT-PCR) performed within 3 days, the sensitivity of CT for 2019 novel coronavirus infection was 98% and that ...
Abstract: In a series of 51 patients with chest CT and real-time polymerase chain reaction assay (RT-PCR) performed within 3 days, the sensitivity of CT for 2019 novel coronavirus infection was 98% and that ...

2,714 citations

Journal ArticleDOI
TL;DR: The method can be used generally for signal enhancement and reduction of measurement time in liquid-state NMR and opens up for a variety of in vitro and in vivo applications of DNP-enhanced NMR.
Abstract: A method for obtaining strongly polarized nuclear spins in solution has been developed. The method uses low temperature, high magnetic field, and dynamic nuclear polarization (DNP) to strongly polarize nuclear spins in the solid state. The solid sample is subsequently dissolved rapidly in a suitable solvent to create a solution of molecules with hyperpolarized nuclear spins. The polarization is performed in a DNP polarizer, consisting of a super-conducting magnet (3.35 T) and a liquid-helium cooled sample space. The sample is irradiated with microwaves at ≈94 GHz. Subsequent to polarization, the sample is dissolved by an injection system inside the DNP magnet. The dissolution process effectively preserves the nuclear polarization. The resulting hyperpolarized liquid sample can be transferred to a high-resolution NMR spectrometer, where an enhanced NMR signal can be acquired, or it may be used as an agent for in vivo imaging or spectroscopy. In this article we describe the use of the method on aqueous solutions of [ 13 C]urea. Polarizations of 37% for 13 C and 7.8% for 15 N, respectively, were obtained after the dissolution. These polarizations correspond to an enhancement of 44,400 for 13 C and 23,500 for 15 N, respectively, compared with thermal equilibrium at 9.4 T and room temperature. The method can be used generally for signal enhancement and reduction of measurement time in liquid-state NMR and opens up for a variety of in vitro and in vivo applications of DNP-enhanced NMR.

2,508 citations

Book
15 Jun 1999
TL;DR: In this article, the authors present a review of the properties of a single Nucleus to a magnetic field and its properties in the context of MR imaging, which includes the following: Magnetic Field Inhomogeneity effects and T-2 Dephasing.
Abstract: Magnetic Resonance Imaging: A Preview. Classical of a Single Nucleus to a Magnetic Field. Rotating Reference Frames and Resonance. Magnetization, Relaxation and the Bloch Equation. The Quantum Mechanical Basis of Precession and Excitation. The Quantum Mechanical Basis of Thermal Equilibrium and Longitudinal Relaxation. Signal Detection Concepts. Introductory Signal Acquisition Methods: Free Induction Decay, Spin Echoes, Inversion Recovery and Spectroscopy. One-Dimensional Fourier Imaging, k-Space and Gradient Echoes. Multi-Dimensional Fourier Imaging and Slice Excitation. The Continuous and Discrete Fourier Transforms. Sampling and Aliasing in Image Reconstruction. Filtering and Resolution in Fourier Transform Image Reconstruction. Projection Reconstruction of Images. Signal, Contrast and Noise. A Closer Look at Radiofrequency Pulses. Water/Fat Separation Techniques. Fast Imaging in the Steady State. Segmented k-Space and Echo Planar Imaging. Magnetic Field Inhomogeneity Effects and T-2 Dephasing. Random Walks, Relaxation and Diffusion. Spin Density, T-1 and T-2 Quantification Methods in MR Imaging. Motion Artifacts and Flow Compensation. MR Angiography and Flow Quantification. Magnetic Properties of Tissues: Theory and Measurement. Sequence Design, Artifacts and Nomenclature. Introduction to MRI Coils and Magnets. Appendices. Index.

2,140 citations

Journal ArticleDOI
Leming Shi1, Laura H. Reid, Wendell D. Jones, Richard Shippy2, Janet A. Warrington3, Shawn C. Baker4, Patrick J. Collins5, Francoise de Longueville, Ernest S. Kawasaki6, Kathleen Y. Lee7, Yuling Luo, Yongming Andrew Sun7, James C. Willey8, Robert Setterquist7, Gavin M. Fischer9, Weida Tong1, Yvonne P. Dragan1, David J. Dix10, Felix W. Frueh1, Federico Goodsaid1, Damir Herman6, Roderick V. Jensen11, Charles D. Johnson, Edward K. Lobenhofer12, Raj K. Puri1, Uwe Scherf1, Jean Thierry-Mieg6, Charles Wang13, Michael A Wilson7, Paul K. Wolber5, Lu Zhang7, William Slikker1, Shashi Amur1, Wenjun Bao14, Catalin Barbacioru7, Anne Bergstrom Lucas5, Vincent Bertholet, Cecilie Boysen, Bud Bromley, Donna Brown, Alan Brunner2, Roger D. Canales7, Xiaoxi Megan Cao, Thomas A. Cebula1, James J. Chen1, Jing Cheng, Tzu Ming Chu14, Eugene Chudin4, John F. Corson5, J. Christopher Corton10, Lisa J. Croner15, Christopher Davies3, Timothy Davison, Glenda C. Delenstarr5, Xutao Deng13, David Dorris7, Aron Charles Eklund11, Xiaohui Fan1, Hong Fang, Stephanie Fulmer-Smentek5, James C. Fuscoe1, Kathryn Gallagher10, Weigong Ge1, Lei Guo1, Xu Guo3, Janet Hager16, Paul K. Haje, Jing Han1, Tao Han1, Heather Harbottle1, Stephen C. Harris1, Eli Hatchwell17, Craig A. Hauser18, Susan D. Hester10, Huixiao Hong, Patrick Hurban12, Scott A. Jackson1, Hanlee P. Ji19, Charles R. Knight, Winston Patrick Kuo20, J. Eugene LeClerc1, Shawn Levy21, Quan Zhen Li, Chunmei Liu3, Ying Liu22, Michael Lombardi11, Yunqing Ma, Scott R. Magnuson, Botoul Maqsodi, Timothy K. McDaniel3, Nan Mei1, Ola Myklebost23, Baitang Ning1, Natalia Novoradovskaya9, Michael S. Orr1, Terry Osborn, Adam Papallo11, Tucker A. Patterson1, Roger Perkins, Elizabeth Herness Peters, Ron L. Peterson24, Kenneth L. Philips12, P. Scott Pine1, Lajos Pusztai25, Feng Qian, Hongzu Ren10, Mitch Rosen10, Barry A. Rosenzweig1, Raymond R. Samaha7, Mark Schena, Gary P. Schroth, Svetlana Shchegrova5, Dave D. Smith26, Frank Staedtler24, Zhenqiang Su1, Hongmei Sun, Zoltan Szallasi20, Zivana Tezak1, Danielle Thierry-Mieg6, Karol L. Thompson1, Irina Tikhonova16, Yaron Turpaz3, Beena Vallanat10, Christophe Van, Stephen J. Walker27, Sue Jane Wang1, Yonghong Wang6, Russell D. Wolfinger14, Alexander Wong5, Jie Wu, Chunlin Xiao7, Qian Xie, Jun Xu13, Wen Yang, Liang Zhang, Sheng Zhong28, Yaping Zong 
TL;DR: This study describes the experimental design and probe mapping efforts behind the MicroArray Quality Control project and shows intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed.
Abstract: Over the last decade, the introduction of microarray technology has had a profound impact on gene expression research. The publication of studies with dissimilar or altogether contradictory results, obtained using different microarray platforms to analyze identical RNA samples, has raised concerns about the reliability of this technology. The MicroArray Quality Control (MAQC) project was initiated to address these concerns, as well as other performance and data analysis issues. Expression data on four titration pools from two distinct reference RNA samples were generated at multiple test sites using a variety of microarray-based and alternative technology platforms. Here we describe the experimental design and probe mapping efforts behind the MAQC project. We show intraplatform consistency across test sites as well as a high level of interplatform concordance in terms of genes identified as differentially expressed. This study provides a resource that represents an important first step toward establishing a framework for the use of microarrays in clinical and regulatory settings.

1,987 citations

Journal ArticleDOI
TL;DR: The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus and is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice.
Abstract: Purpose: The development of computer-aided diagnostic (CAD) methods for lung nodule detection, classification, and quantitative assessment can be facilitated through a well-characterized repository of computed tomography (CT) scans. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI) completed such a database, establishing a publicly available reference for the medical imaging research community. Initiated by the National Cancer Institute (NCI), further advanced by the Foundation for the National Institutes of Health (FNIH), and accompanied by the Food and Drug Administration (FDA) through active participation, this public-private partnership demonstrates the success of a consortium founded on a consensus-based process. Methods: Seven academic centers and eight medical imaging companies collaborated to identify, address, and resolve challenging organizational, technical, and clinical issues to provide a solid foundation for a robust database. The LIDC/IDRI Database contains 1018 cases, each of which includes images from a clinical thoracic CT scan and an associated XML file that records the results of a two-phase image annotation process performed by four experienced thoracic radiologists. In the initial blinded-read phase, each radiologist independently reviewed each CT scan and marked lesions belonging to one of three categories (" nodule�3 mm," " nodule<3 mm," and "non- nodule�3 mm "). In the subsequent unblinded-read phase, each radiologist independently reviewed their own marks along with the anonymized marks of the three other radiologists to render a final opinion. The goal of this process was to identify as completely as possible all lung nodules in each CT scan without requiring forced consensus. Results: The Database contains 7371 lesions marked "nodule" by at least one radiologist. 2669 of these lesions were marked " nodul�3 mm " by at least one radiologist, of which 928 (34.7) received such marks from all four radiologists. These 2669 lesions include nodule outlines and subjective nodule characteristic ratings. Conclusions: The LIDC/IDRI Database is expected to provide an essential medical imaging research resource to spur CAD development, validation, and dissemination in clinical practice. © 2011 U.S. Government.

1,923 citations


Authors

Showing all 4184 results

NameH-indexPapersCitations
David J. Brooks152105694335
Ryoji Noyori10562747578
Michael B. Yaffe10237941663
Magnus Karlsson91122638208
Bengt Långström8370030513
Jonathon Pines8113822961
Ian D. Wilson8059433379
James R. MacFall7323715358
Richard G. Frank7139922928
Kevin M. Brindle7029619633
Scott B. Reeder6736818258
John H. Reif6742721692
Guanghui Ma6649717108
Joshua Fierer5919012760
W. K. Peterson5826112538
Network Information
Related Institutions (5)
Stanford University
320.3K papers, 21.8M citations

85% related

University of Pennsylvania
257.6K papers, 14.1M citations

84% related

Johns Hopkins University
249.2K papers, 14M citations

84% related

University of Michigan
342.3K papers, 17.6M citations

84% related

University of Toronto
294.9K papers, 13.5M citations

83% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202227
2021563
2020489
2019359
2018350
2017330