scispace - formally typeset
Search or ask a question
Institution

Icahn School of Medicine at Mount Sinai

EducationNew York, New York, United States
About: Icahn School of Medicine at Mount Sinai is a education organization based out in New York, New York, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 37488 authors who have published 76057 publications receiving 3704104 citations. The organization is also known as: Mount Sinai School of Medicine.


Papers
More filters
Journal ArticleDOI
TL;DR: It is proposed that the anterior cingulate cortex is a specialization of neocortex rather than a more primitive stage of cortical evolution, and thus are a recent evolutionary specialization probably related to these functions central to intelligent behavior.
Abstract: We propose that the anterior cingulate cortex is a specialization of neocortex rather than a more primitive stage of cortical evolution. Functions central to intelligent behavior, that is, emotional self-control, focused problem solving, error recognition, and adaptive response to changing conditions, are juxtaposed with the emotions in this structure. Evidence of an important role for the anterior cingulate cortex in these functions has accumulated through single-neuron recording, electrical stimulation, EEG, PET, fMRI, and lesion studies. The anterior cingulate cortex contains a class of spindle-shaped neurons that are found only in humans and the great apes, and thus are a recent evolutionary specialization probably related to these functions. The spindle cells appear to be widely connected with diverse parts of the brain and may have a role in the coordination that would be essential in developing the capacity to focus on difficult problems. Furthermore, they emerge postnatally and their survival may be enhanced or reduced by environmental conditions of enrichment or stress, thus potentially influencing adult competence or dysfunction in emotional self-control and problem-solving capacity.

918 citations

Journal ArticleDOI
TL;DR: Among participants at high genetic risk, a favorable lifestyle was associated with a nearly 50% lower relative risk of coronary artery disease than was an unfavorable lifestyle, and across four studies involving 55,685 participants, genetic and lifestyle factors were independently associated with susceptibility to coronary arteries disease.
Abstract: BackgroundBoth genetic and lifestyle factors contribute to individual-level risk of coronary artery disease. The extent to which increased genetic risk can be offset by a healthy lifestyle is unknown. MethodsUsing a polygenic score of DNA sequence polymorphisms, we quantified genetic risk for coronary artery disease in three prospective cohorts — 7814 participants in the Atherosclerosis Risk in Communities (ARIC) study, 21,222 in the Women’s Genome Health Study (WGHS), and 22,389 in the Malmo Diet and Cancer Study (MDCS) — and in 4260 participants in the cross-sectional BioImage Study for whom genotype and covariate data were available. We also determined adherence to a healthy lifestyle among the participants using a scoring system consisting of four factors: no current smoking, no obesity, regular physical activity, and a healthy diet. ResultsThe relative risk of incident coronary events was 91% higher among participants at high genetic risk (top quintile of polygenic scores) than among those at low gen...

915 citations

Journal ArticleDOI
TL;DR: It is demonstrated that endoderm develops from a brachyury+ population that also displays mesoderm potential, and this differentiation system is established as a unique murine model for studying the development and specification of this germ layer.
Abstract: The cellular and molecular events regulating the induction and tissue-specific differentiation of endoderm are central to our understanding of the development and function of many organ systems. To define and characterize key components in this process, we have investigated the potential of embryonic stem (ES) cells to generate endoderm following their differentiation to embryoid bodies (EBs) in culture. We found that endoderm can be induced in EBs, either by limited exposure to serum or by culturing in the presence of activin A (activin) under serum-free conditions. By using an ES cell line with the green fluorescent protein (GFP) cDNA targeted to the brachyury locus, we demonstrate that endoderm develops from a brachyury(+) population that also displays mesoderm potential. Transplantation of cells generated from activin-induced brachyury(+) cells to the kidney capsule of recipient mice resulted in the development of endoderm-derived structures. These findings demonstrate that ES cells can generate endoderm in culture and, as such, establish this differentiation system as a unique murine model for studying the development and specification of this germ layer.

914 citations

Journal ArticleDOI
24 Jan 2013-Nature
TL;DR: It is shown that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference, which reveals novel firing-pattern- and neural-circuit-specific mechanisms of depression.
Abstract: Ventral tegmental area (VTA) dopamine neurons in the brain's reward circuit have a crucial role in mediating stress responses, including determining susceptibility versus resilience to social-stress-induced behavioural abnormalities. VTA dopamine neurons show two in vivo patterns of firing: low frequency tonic firing and high frequency phasic firing. Phasic firing of the neurons, which is well known to encode reward signals, is upregulated by repeated social-defeat stress, a highly validated mouse model of depression. Surprisingly, this pathophysiological effect is seen in susceptible mice only, with no apparent change in firing rate in resilient individuals. However, direct evidence--in real time--linking dopamine neuron phasic firing in promoting the susceptible (depression-like) phenotype is lacking. Here we took advantage of the temporal precision and cell-type and projection-pathway specificity of optogenetics to show that enhanced phasic firing of these neurons mediates susceptibility to social-defeat stress in freely behaving mice. We show that optogenetic induction of phasic, but not tonic, firing in VTA dopamine neurons of mice undergoing a subthreshold social-defeat paradigm rapidly induced a susceptible phenotype as measured by social avoidance and decreased sucrose preference. Optogenetic phasic stimulation of these neurons also quickly induced a susceptible phenotype in previously resilient mice that had been subjected to repeated social-defeat stress. Furthermore, we show differences in projection-pathway specificity in promoting stress susceptibility: phasic activation of VTA neurons projecting to the nucleus accumbens (NAc), but not to the medial prefrontal cortex (mPFC), induced susceptibility to social-defeat stress. Conversely, optogenetic inhibition of the VTA-NAc projection induced resilience, whereas inhibition of the VTA-mPFC projection promoted susceptibility. Overall, these studies reveal novel firing-pattern- and neural-circuit-specific mechanisms of depression.

914 citations

Journal ArticleDOI
TL;DR: It is demonstrated that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-c adhesion molecules, and the increase in their adherence to endothelium may improve their ability to enter and exit the vasculature, two properties that may be responsible for metastasis of N- cadher in–expressing cells.
Abstract: E- and N-cadherin are calcium-dependent cell adhesion molecules that mediate cell–cell adhesion and also modulate cell migration and tumor invasiveness. The loss of E-cadherin–mediated adhesion has been shown to play an important role in the transition of epithelial tumors from a benign to an invasive state. However, recent evidence indicates that another member of the cadherin family, N-cadherin, is expressed in highly invasive tumor cell lines that lacked E-cadherin expression. These findings have raised the possibility that N-cadherin contributes to the invasive phenotype. To determine whether N-cadherin promotes invasion and metastasis, we transfected a weakly metastatic and E-cadherin–expressing breast cancer cell line, MCF-7, with N-cadherin and analyzed the effects on cell migration, invasion, and metastasis. Transfected cells expressed both E- and N-cadherin and exhibited homotypic cell adhesion from both molecules. In vitro, N-cadherin–expressing cells migrated more efficiently, showed an increased invasion of Matrigel, and adhered more efficiently to monolayers of endothelial cells. All cells produced low levels of the matrix metalloproteinase MMP-9, which was dramatically upregulated by treatment with FGF-2 only in N-cadherin–expressing cells. Migration and invasion of Matrigel were also greatly enhanced by this treatment. When injected into the mammary fat pad of nude mice, N-cadherin–expressing cells, but not control MCF-7 cells, metastasized widely to the liver, pancreas, salivary gland, omentum, lung, lymph nodes, and lumbar spinal muscle. The expression of both E- and N-cadherin was maintained both in the primary tumors and metastatic lesions. These results demonstrate that N-cadherin promotes motility, invasion, and metastasis even in the presence of the normally suppressive E-cadherin. The increase in MMP-9 production by N-cadherin–expressing cells in response to a growth factor may endow them with a greater ability to penetrate matrix protein barriers, while the increase in their adherence to endothelium may improve their ability to enter and exit the vasculature, two properties that may be responsible for metastasis of N-cadherin–expressing cells.

913 citations


Authors

Showing all 37948 results

NameH-indexPapersCitations
Robert Langer2812324326306
Shizuo Akira2611308320561
Gordon H. Guyatt2311620228631
Eugene Braunwald2301711264576
Bruce S. McEwen2151163200638
Robert J. Lefkowitz214860147995
Peter Libby211932182724
Mark J. Daly204763304452
Stuart H. Orkin186715112182
Paul G. Richardson1831533155912
Alan C. Evans183866134642
John C. Morris1831441168413
Paul M. Thompson1832271146736
Tadamitsu Kishimoto1811067130860
Bruce M. Psaty1811205138244
Network Information
Related Institutions (5)
Johns Hopkins University School of Medicine
79.2K papers, 4.7M citations

99% related

University of Texas Southwestern Medical Center
75.2K papers, 4.4M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

Baylor College of Medicine
94.8K papers, 5M citations

98% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

98% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023157
2022845
20217,117
20206,224
20195,200
20184,505