scispace - formally typeset
Search or ask a question
Institution

International School for Advanced Studies

EducationTrieste, Friuli-Venezia Giulia, Italy
About: International School for Advanced Studies is a education organization based out in Trieste, Friuli-Venezia Giulia, Italy. It is known for research contribution in the topics: Galaxy & Dark matter. The organization has 3751 authors who have published 13433 publications receiving 588454 citations. The organization is also known as: SISSA & Scuola Internazionale Superiore di Studi Avanzati.


Papers
More filters
Journal ArticleDOI
TL;DR: The phase diagram of the Axelrod's model for social influence is studied and a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered ( Culturally fragmented) one is uncovered.
Abstract: We present extensive numerical simulations of the Axelrod's model for social influence, aimed at understanding the formation of cultural domains. This is a nonequilibrium model with short range interactions and a remarkably rich dynamical behavior. We study the phase diagram of the model and uncover a nonequilibrium phase transition separating an ordered (culturally polarized) phase from a disordered (culturally fragmented) one. The nature of the phase transition can be continuous or discontinuous depending on the model parameters. At the transition, the size of cultural regions is power-law distributed.

278 citations

Journal ArticleDOI
TL;DR: In this article, a parametrization of the most general theory of their perturbations around a given background, including higher derivative terms, was proposed. But the authors did not consider the stability of the model.
Abstract: We study generic single-field dark energy models, by a parametrization of the most general theory of their perturbations around a given background, including higher derivative terms. In appropriate limits this approach reproduces standard quintessence, k-essence and ghost condensation. We find no general pathology associated to an equation of state w{sub Q} < -1 or in crossing the phantom divide w{sub Q} = -1. Stability requires that the w{sub Q} < -1 side of dark energy behaves, on cosmological scales, as a k-essence fluid with a virtually zero speed of sound. This implies that one should set the speed of sound to zero when comparing with data models with w{sub Q} < -1 or crossing the phantom divide. We summarize the theoretical and stability constraints on the quintessential plane (1+w{sub Q}) vs. speed of sound squared.

278 citations

Journal ArticleDOI
TL;DR: In this article, the authors review the latest achievements and persisting problems in the understanding of first cosmic structure formation, and present a survey of the early universe's structure formation problems.
Abstract: Despite much recent theoretical and observational progress in our knowledge of the early universe, many fundamental questions remain only partially answered. Here, we review the latest achievements and persisting problems in the understanding of first cosmic structure formation.

277 citations

Journal ArticleDOI
TL;DR: The COLIBRI code as mentioned in this paper is the first evolutionary code for the TP-AGB model that can be used to model the evolution of stars along the AGB phase in a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell.
Abstract: We present the COLIBRI code for computing the evolution of stars along the TP-AGB phase. Compared to purely synthetic TP-AGB codes, COLIBRI relaxes a significant part of their analytic formalism in favour of a detailed physics applied to a complete envelope model, in which the stellar structure equations are integrated from the atmosphere down to the bottom of the hydrogen-burning shell. This allows to predict selfconsistently: (i) the effective temperature, and more generally the convective envelope and atmosphere structures, correctly coupled to the changes in the surface chemical abundances and gas opacities; (ii) the conditions under which sphericity effects may significantly affect the atmospheres of giant stars; (iii) the core mass-luminosity relation and its possible break-down due to the occurrence of hot bottom burning (HBB) in the most massive AGB stars, by taking properly into account the nuclear energy generation in the H-burning shell and in the deepest layers of the convective envelope; (iv) the HBB nucleosynthesis via the solution of a complete nuclear network (including the pp chains, and the CNO, NeNa, MgAl cycles) coupled to a diffusive description of mixing, suitable to follow also the synthesis of 7 Li via the Cameron-Fowler beryllium transport mechanism; (v) the intershell abundances left by each thermal pulse via the solution of a complete nuclear network applied to a simple model of the pulsedriven convective zone; (vi) the onset and quenching of the third dredge-up, with a temperature criterion that is applied, at each thermal pulse, to the result of envelope integrations at the stage of the post-flash luminosity peak. At the same time COLIBRI pioneers new techniques in the treatment of the physics of stellar interiors, not yet adopted in full TP-AGB models. It is the first evolutionary code ever to use accurate on-the-fly computation of the equation of state for roughly 800 atoms, ions, molecules, and of the Rosseland mean opacities throughout the atmosphere and the deep envelope. This ensures a complete consistency, step by step, of both EoS and opacity with the evolution of the chemical abundances caused by the third dredge-up and HBB. Another distinguishing aspect of COLIBRI is its high computational speed, that allows to generate complete grids of TP-AGB models in just a few hours. This feature is absolutely necessary for calibrating the many uncertain parameters and processes that characterize the TP-AGB phase. We illustrate the many unique features of COLIBRI by means of detailed evolutionary tracks computed for several choices of model parameters, including initial star masses, chemical abundances, nuclear reaction rates, efficiencyof the third dredge-up, overshooting at the base of the pulse-driven convection zone, etc. Future papers in this series will deal with the calibration of all these and other parameters using observational data of AGB stars in the Galaxy and in nearby systems, a step that is of paramount importance for producing reliable stellar population synthesis models of galaxies up to high redshift.

276 citations

Journal ArticleDOI
TL;DR: The variational stochastic reconfiguration technique presented here allows in general a many-parameter energy optimization of any computable many-body wave function, including for instance generic long-range Jastrow factors and arbitrary site-dependent orbital determinants.
Abstract: We show that the standard Lanczos algorithm can be efficiently implemented statistically and self-consistently improved, using the stochastic reconfiguration method, which has been recently introduced to stabilize the Monte Carlo sign problem instability. With this scheme a few Lanczos steps over a given variational wave function are possible even for large size as a particular case of a more general and more accurate technique that allows to obtain lower variational energies. This method has been tested extensively for a strongly correlated model like the $t\ensuremath{-}J$ model. With the standard Lanczos technique it is possible to compute any kind of correlation functions, with no particular computational effort. By using the fact that the variance $〈{H}^{2}〉\ensuremath{-}〈H{〉}^{2}$ is zero for an exact eigenstate, we show that the approach to the exact solution with few Lanczos iterations is indeed possible even for $\ensuremath{\sim}100$ electrons for reasonably good initial wave functions. The variational stochastic reconfiguration technique presented here allows in general a many-parameter energy optimization of any computable many-body wave function, including for instance generic long-range Jastrow factors and arbitrary site-dependent orbital determinants. This scheme improves further the accuracy of the calculation, especially for long-distance correlation functions.

276 citations


Authors

Showing all 3802 results

NameH-indexPapersCitations
Sabino Matarrese155775123278
G. de Zotti154718121249
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
Carlo Baccigalupi137518104722
L. Toffolatti13637695529
Michele Parrinello13363794674
Marzio Nessi129104678641
Luigi Danese12839492073
Lidia Smirnova12794475865
Michele Pinamonti12684669328
David M. Alexander12565260686
Davide Maino12441088117
Dipak Munshi12436584322
Peter Onyisi11469460392
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

88% related

École Polytechnique
39.2K papers, 1.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202279
2021658
2020714
2019712
2018622