scispace - formally typeset
Search or ask a question
Institution

International School for Advanced Studies

EducationTrieste, Friuli-Venezia Giulia, Italy
About: International School for Advanced Studies is a education organization based out in Trieste, Friuli-Venezia Giulia, Italy. It is known for research contribution in the topics: Galaxy & Dark matter. The organization has 3751 authors who have published 13433 publications receiving 588454 citations. The organization is also known as: SISSA & Scuola Internazionale Superiore di Studi Avanzati.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors compared 11 independent radiative transfer (RT) codes on five test problems: (0) basic physics; (1) isothermal H II region expansion; (2) H II Region expansion with evolving temperature; (3) I-front trapping and shadowing by a dense clump and (4) multiple sources in a cosmological density field.
Abstract: Radiative transfer (RT) simulations are now at the forefront of numerical astrophysics. They are becoming crucial for an increasing number of astrophysical and cosmological problems; at the same time their computational cost has come within reach of currently available computational power. Further progress is retarded by the considerable number of different algorithms (including various flavours of ray tracing and moment schemes) developed, which makes the selection of the most suitable technique for a given problem a non-trivial task. Assessing the validity ranges, accuracy and performances of these schemes is the main aim of this paper, for which we have compared 11 independent RT codes on five test problems: (0) basic physics; (1) isothermal H II region expansion; (2) H II region expansion with evolving temperature; (3) I-front trapping and shadowing by a dense clump and (4) multiple sources in a cosmological density field. The outputs of these tests have been compared and differences analysed. The agreement between the various codes is satisfactory although not perfect. The main source of discrepancy appears to reside in the multifrequency treatment approach, resulting in different thicknesses of the ionized-neutral transition regions and the temperature structure. The present results and tests represent the most complete benchmark available for the development of new codes and improvement of existing ones. To further this aim all test inputs and outputs are made publicly available in digital form.

231 citations

Journal ArticleDOI
TL;DR: In this article, a set of self-similar equations for the null-slicing form of the metric which we are using for our numerical calculations are derived, and compared with the results obtained by integrating these with the ones coming from our simulations for the collapse of cosmological perturbations within an expanding universe.
Abstract: Following on after three previous papers discussing the formation of primordial black holes during the radiative era of the early universe, we present here a further investigation of the critical nature of the process involved, aimed at making contact with some of the basic underlying ideas from the literature on critical collapse. We focus on the intermediate state, which we have found appearing in cases with perturbations close to the critical limit, and examine the connection between this and the similarity solutions which play a fundamental role in the standard picture of critical collapse. We have derived a set of self-similar equations for the null-slicing form of the metric which we are using for our numerical calculations, and have then compared the results obtained by integrating these with the ones coming from our simulations for the collapse of cosmological perturbations within an expanding universe. We find that the similarity solution is asymptotically approached in a region which grows to cover both the contracting matter and part of the semi-void which forms outside it. Our main interest is in the situation relevant for primordial black hole formation in the radiative era of the early universe, where the relation between the pressure p and the energy density e can be reasonably approximated by an expression of the form p = we with w = 1/3. However, we have also looked at other values of w, both because these have been considered in the previous literature and also because they can be helpful for giving further insight into situations relevant for primordial black hole formation. As in our previous work, we have started our simulations with initial supra-horizon scale perturbations of a type which could have come from inflation.

230 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider a scenario with three Majorana neutrinos in which a discrete, finite flavour group is combined with a generalized CP transformation and derive conditions for consistently defining such a setup.
Abstract: We consider a scenario with three Majorana neutrinos in which a discrete, finite flavour group G f is combined with a generalized CP transformation. We derive conditions for consistently defining such a setup. We show that in general lepton mixing angles and CP phases (Dirac as well as Majorana) only depend on one single parameter θ which can take values between 0 and π, if the residual symmetries are G e ⊂ G f in the charged lepton and G ν = Z 2 × CP in the neutrino sector. We perform a comprehensive study for G f = S 4 and find five cases which are phenomenologically interesting. They naturally lead to a non-zero reactor mixing angle and all mixing parameters are strongly correlated. Some of the patterns predict maximal atmospheric mixing and maximal Dirac phase, while others predict trivial Dirac and Majorana phases.

230 citations

Journal ArticleDOI
TL;DR: In this paper, the authors apply the techniques of control theory and of sub-Riemannian geometry to laser-induced population transfer in two-and three-level quantum systems, where the aim is to induce complete population transfer by one or two laser pulses minimizing the pulse fluences.
Abstract: We apply the techniques of control theory and of sub-Riemannian geometry to laser-induced population transfer in two- and three-level quantum systems. The aim is to induce complete population transfer by one or two laser pulses minimizing the pulse fluences. Sub-Riemannian geometry and singular-Riemannian geometry provide a natural framework for this minimization, where the optimal control is expressed in terms of geodesics. We first show that in two-level systems the well-known technique of “π-pulse transfer” in the rotating wave approximation emerges naturally from this minimization. In three-level systems driven by two resonant fields, we also find the counterpart of the “π-pulse transfer.” This geometrical picture also allows one to analyze the population transfer by adiabatic passage.

230 citations

Journal ArticleDOI
Alain Abergel1, Peter A. R. Ade2, Nabila Aghanim1, M. Arnaud3  +245 moreInstitutions (57)
TL;DR: In this paper, a comparison of Planck dust maps at 353, 545 and 857 GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800deg(2) at high Galactic latitude is presented.
Abstract: This paper presents the first results from a comparison of Planck dust maps at 353, 545 and 857GHz, along with IRAS data at 3000 (100 μm) and 5000GHz (60 μm), with Green Bank Telescope 21-cm observations of Hi in 14 fields covering more than 800deg(2) at high Galactic latitude. The main goal of this study is to estimate the far-infrared to sub-millimeter (submm) emissivity of dust in the diffuse local interstellar medium (ISM) and in the intermediate-velocity (IVC) and high-velocity clouds (HVC) of the Galactic halo. Galactic dust emission for fields with average Hi column density lower than 2 × 10(20) cm(-20) is well correlated with 21-cm emission because in such diffuse areas the hydrogen is predominantly in the neutral atomic phase. The residual emission in these fields, once the Hi-correlated emission is removed, is consistent with the expected statistical properties of the cosmic infrared background fluctuations. The brighter fields in our sample, with an average Hi column density greater than 2 × 10(20) cm(-2), show significant excess dust emission compared to the Hi column density. Regions of excess lie in organized structures that suggest the presence of hydrogen in molecular form, though they are not always correlated with CO emission. In the higher Hi column density fields the excess emission at 857 GHz is about 40% of that coming from the Hi, but over all the high latitude fields surveyed the molecular mass faction is about 10%. Dust emission from IVCs is detected with high significance by this correlation analysis. Its spectral properties are consistent with, compared to the local ISM values, significantly hotter dust (T ~ 20 K), lower submm dust opacity normalized per H-atom, and a relative abundance of very small grains to large grains about four times higher. These results are compatible with expectations for clouds that are part of the Galactic fountain in which there is dust shattering and fragmentation. Correlated dust emission in HVCs is not detected; the average of the 99.9% confidence upper limits to the emissivity is 0.15 times the local ISM value at 857 and 3000GHz, in accordance with gas phase evidence for lower metallicity and depletion in these clouds. Unexpected anti-correlated variations of the dust temperature and emission cross-section per H atom are identified in the local ISM and IVCs, a trend that continues into molecular environments. This suggests that dust growth through aggregation, seen in molecular clouds, is active much earlier in the cloud condensation and star formation processes.

230 citations


Authors

Showing all 3802 results

NameH-indexPapersCitations
Sabino Matarrese155775123278
G. de Zotti154718121249
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
Carlo Baccigalupi137518104722
L. Toffolatti13637695529
Michele Parrinello13363794674
Marzio Nessi129104678641
Luigi Danese12839492073
Lidia Smirnova12794475865
Michele Pinamonti12684669328
David M. Alexander12565260686
Davide Maino12441088117
Dipak Munshi12436584322
Peter Onyisi11469460392
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

88% related

École Polytechnique
39.2K papers, 1.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202279
2021658
2020714
2019712
2018622