scispace - formally typeset
Search or ask a question
Institution

International School for Advanced Studies

EducationTrieste, Friuli-Venezia Giulia, Italy
About: International School for Advanced Studies is a education organization based out in Trieste, Friuli-Venezia Giulia, Italy. It is known for research contribution in the topics: Galaxy & Dark matter. The organization has 3751 authors who have published 13433 publications receiving 588454 citations. The organization is also known as: SISSA & Scuola Internazionale Superiore di Studi Avanzati.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a quantitative analysis of the astrophysical and cosmological information that can be extracted from the many important wide-area, shallow surveys that will be carried out in the next few years.
Abstract: We present a quantitative analysis of the astrophysical and cosmological information that can be extracted from the many important wide-area, shallow surveys that will be carried out in the next few years. Our calculations combine the predictions of the physical model by Granato et al. for the formation and evolution of spheroidal galaxies with up-to-date phenomenological models for the evolution of starburst and normal late-type galaxies and of radio sources. We compute the expected number counts and the redshift distributions of these source populations separately and then focus on protospheroidal galaxies. For the latter objects, we predict the counts and redshift distributions of strongly lensed sources at 250, 350, 500 and 850 μm, the angular correlation function of sources detected in the surveys considered, and the angular power spectra due to clustering of sources below the detection limit in Herschel and Planck surveys. An optimal survey for selecting strongly lensed protospheroidal galaxies is described, and it is shown how they can be easily distinguished from the other source populations. We also discuss the detectability of the imprints of the one-halo and two-halo regimes on angular correlation functions and clustering power spectra, as well as the constraints on cosmological parameters that can be obtained from the determinations of these quantities. The novel data relevant to derive the first submillimetre estimates of the local luminosity functions of starburst and late-type galaxies, and the constraints on the properties of rare source populations, such as blazars, are also briefly described.

242 citations

Journal ArticleDOI
TL;DR: Data indicate that tau cleavage and change in phosphorylation are important early factors in the failure of the microtubule network that occurs during neuronal apoptosis and new insights are introduced into the mechanism(s) that generate the truncated forms of tau present in Alzheimer's disease.
Abstract: Cerebellar granule cells undergo apoptosis in culture after deprivation of potassium and serum. During this process we found that tau, a neuronal microtubule-associated protein that plays a key role in the maintenance of neuronal architecture, and the pathology of which correlates with intellectual decline in Alzheimer's disease, is cleaved. The final product of this cleavage is a soluble dephosphorylated tau fragment of 17 kDa that is unable to associate with microtubules and accumulates in the perikarya of dying cells. The appearance of this 17 kDa fragment is inhibited by both caspase and calpain inhibitors, suggesting that tau is an in vivo substrate for both of these proteases during apoptosis. Tau cleavage is correlated with disruption of the microtubule network, and experiments with colchicine and taxol show that this is likely to be a cause and not a consequence of tau cleavage. These data indicate that tau cleavage and change in phosphorylation are important early factors in the failure of the microtubule network that occurs during neuronal apoptosis. Furthermore, this study introduces new insights into the mechanism(s) that generate the truncated forms of tau present in Alzheimer's disease.

242 citations

Journal ArticleDOI
TL;DR: The results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.
Abstract: Neuronal responses to ongoing stimulation in many systems change over time, or “adapt.” Despite the ubiquity of adaptation, its effects on the stimulus information carried by neurons are often unknown. Here we examine how adaptation affects sensory coding in barrel cortex. We used spike-triggered covariance analysis of single-neuron responses to continuous, rapidly varying vibrissa motion stimuli, recorded in anesthetized rats. Changes in stimulus statistics induced spike rate adaptation over hundreds of milliseconds. Vibrissa motion encoding changed with adaptation as follows. In every neuron that showed rate adaptation, the input–output tuning function scaled with the changes in stimulus distribution, allowing the neurons to maintain the quantity of information conveyed about stimulus features. A single neuron that did not show rate adaptation also lacked input–output rescaling and did not maintain information across changes in stimulus statistics. Therefore, in barrel cortex, rate adaptation occurs on a slow timescale relative to the features driving spikes and is associated with gain rescaling matched to the stimulus distribution. Our results suggest that adaptation enhances tactile representations in primary somatosensory cortex, where they could directly influence perceptual decisions.

242 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented a homogeneous and 92% complete optical spectral dataset of the 3CR radio sources with redshift < 0.3, which revealed the presence of two main sub-populations of radio-loud AGNs, referred to as high and low excitation galaxies (HEG and LEG), respectively.
Abstract: In a previous paper we presented a homogeneous and 92% complete optical spectral dataset of the 3CR radio sources with redshift <0.3. Here we use the emission line measurements to explore the spectroscopic properties of the sample. The 3CR sources show a bimodal distribution of excitation index, a new spectroscopic indicator that measures the relative intensity of low and high excitation lines. This unveils the presence of two main sub-populations of radio-loud AGN to which we refer to, following previous studies, as high and low excitation galaxies (HEG and LEG, respectively). In addition to the two main classes, we find one source with a spectrum typical of star forming galaxies, and 3 objects of extremely low level of excitation. All broad-line objects are HEG from the point of view of their narrow emission line ratios and all HEG are FR II radio-galaxies with log L-178 [erg s(-1)] greater than or similar to 32.8. Conversely LEG cover the whole range of radio power encompassed by this 3CR subsample (30.7 less than or similar to log L-178 less than or similar to 35.4) and they are of both FR I and FR II type. The brightest LEG are all FR II. HEG and LEG obey to two (quasi) linear correlations between the optical line and extended radio luminosities, with HEG being brighter than LEG in the [O III] line by a factor of similar to 10. HEG and LEG are offset also in a plane that compares the black hole mass and the ionizing nuclear luminosity. However, although HEG are associated with higher nuclear luminosities, we find LEG among the brightest radio sources of the sample and with a clear FR II morphology, indistinguishable from those seen in HEG. This suggests that LEG are not simply objects with a lower level of accretion. We speculate that the differences between LEG and HEG are related to a different mode of accretion: LEG are powered by hot gas, while HEG require the presence of cold accreting material. The high temperature of the accreting gas in LEG accounts for the lack of "cold" structures (i.e. molecular torus and broad line region), for the reduced radiative output of the accretion disk, and for the lower gas excitation.

242 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used N-body/SPH simulation of a large sample of ∼100 galaxy clusters and investigated total mass biases by comparing the mass reconstructed adopting an observational-like approach with the true mass in the simulations.
Abstract: Context. The exploitation of clusters of galaxies as cosmological probes relies on accurate measurements of their total gravitating mass. X-ray observations provide a powerful means of probing the total mass distribution in galaxy clusters, but might be affected by observational biases and rely on simplistic assumptions originating from our limited understanding of the intracluster medium physics. Aims. This paper is aimed at elucidating the reliability of X-ray total mass estimates in clusters of galaxies by properly disentangling various biases of both observational and physical origin. Methods. We use N-body/SPH simulation of a large sample of ∼100 galaxy clusters and investigate total mass biases by comparing the mass reconstructed adopting an observational-like approach with the true mass in the simulations. X-ray surface brightness and temperature profiles extracted from the simulations are fitted with different models and adopting different radial fitting ranges in order to investigate modeling and extrapolation biases. Different theoretical definitions of gas temperature are used to investigate the effect of spectroscopic temperatures and a power ratio analysis of the surface brightness maps allows us to assess the dependence of the mass bias on cluster dynamical state. Moreover, we perform a study on the reliability of hydrostatic and hydrodynamical equilibrium mass estimates using the full three-dimensional information in the simulation. Results. A model with a low degree of sophistication such as the polytropic β-model can introduce, in comparison with a more adequate model, an additional mass underestimate of the order of ∼10% at r500 and ∼15% at r200. Underestimates due to extrapolation alone are at most of the order of ∼10% on average, but can be as large as ∼50% for individual objects. Masses are on average biased lower for disturbed clusters than for relaxed ones and the scatter of the bias rapidly increases with increasingly disturbed dynamical state. The bias originating from spectroscopic temperatures alone is of the order of 10% at all radii for the whole numerical sample, but strongly depends on both dynamical state and cluster mass. From the full three dimensional information in the simulations we find that the hydrostatic equilibrium assumption yields masses underestimated by ∼10–15% and that masses computed by means of the hydrodynamical estimator are unbiased. Finally, we show that there is excellent agreement between our findings, results from similar analyses based on both Eulerian and Lagrangian simulations, and recent observational work based on the comparison between X-ray and gravitational lensing mass estimates.

241 citations


Authors

Showing all 3802 results

NameH-indexPapersCitations
Sabino Matarrese155775123278
G. de Zotti154718121249
J. González-Nuevo144500108318
Matt J. Jarvis144106485559
Carlo Baccigalupi137518104722
L. Toffolatti13637695529
Michele Parrinello13363794674
Marzio Nessi129104678641
Luigi Danese12839492073
Lidia Smirnova12794475865
Michele Pinamonti12684669328
David M. Alexander12565260686
Davide Maino12441088117
Dipak Munshi12436584322
Peter Onyisi11469460392
Network Information
Related Institutions (5)
Max Planck Society
406.2K papers, 19.5M citations

90% related

Weizmann Institute of Science
54.5K papers, 3M citations

88% related

University of Paris-Sud
52.7K papers, 2.1M citations

88% related

Brookhaven National Laboratory
39.4K papers, 1.7M citations

88% related

École Polytechnique
39.2K papers, 1.2M citations

87% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202322
202279
2021658
2020714
2019712
2018622