scispace - formally typeset
Search or ask a question
Institution

J. Craig Venter Institute

NonprofitLa Jolla, California, United States
About: J. Craig Venter Institute is a nonprofit organization based out in La Jolla, California, United States. It is known for research contribution in the topics: Genome & Gene. The organization has 1268 authors who have published 2300 publications receiving 304083 citations. The organization is also known as: JCVI & The Institute for Genomic Research.
Topics: Genome, Gene, Genomics, Population, Microbiome


Papers
More filters
Journal ArticleDOI
TL;DR: The results reveal that spiders and scorpions are likely the descendants of a polyploid ancestor that lived more than 450 MYA, and this study of the ancient WGD event in Arachnopulmonata provides a new comparative platform to explore common and divergent evolutionary outcomes ofpolyploidization events across eukaryotes.
Abstract: Background: The duplication of genes can occur through various mechanisms and is thought to make a major contribution to the evolutionary diversification of organisms. There is increasing evidence ...

362 citations

Journal ArticleDOI
TL;DR: Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.
Abstract: The complete genome of the green-sulfur eubacterium Chlorobium tepidum TLS was determined to be a single circular chromosome of 2,154,946 bp. This represents the first genome sequence from the phylum Chlorobia, whose members perform anoxygenic photosynthesis by the reductive tricarboxylic acid cycle. Genome comparisons have identified genes in C. tepidum that are highly conserved among photosynthetic species. Many of these have no assigned function and may play novel roles in photosynthesis or photobiology. Phylogenomic analysis reveals likely duplications of genes involved in biosynthetic pathways for photosynthesis and the metabolism of sulfur and nitrogen as well as strong similarities between metabolic processes in C. tepidum and many Archaeal species.

362 citations

Journal ArticleDOI
TL;DR: The complete genome of Aeromonas hydrophila ATCC 7966(T) was sequenced and provides valuable insights into its ability to flourish in both aquatic and host environments.
Abstract: The complete genome of Aeromonas hydrophila ATCC 7966T was sequenced. Aeromonas, a ubiquitous waterborne bacterium, has been placed by the Environmental Protection Agency on the Contaminant Candidate List because of its potential to cause human disease. The 4.7-Mb genome of this emerging pathogen shows a physiologically adroit organism with broad metabolic capabilities and considerable virulence potential. A large array of virulence genes, including some identified in clinical isolates of Aeromonas spp. or Vibrio spp., may confer upon this organism the ability to infect a wide range of hosts. However, two recognized virulence markers, a type III secretion system and a lateral flagellum, that are reported in other A. hydrophila strains are not identified in the sequenced isolate, ATCC 7966T. Given the ubiquity and free-living lifestyle of this organism, there is relatively little evidence of fluidity in terms of mobile elements in the genome of this particular strain. Notable aspects of the metabolic repertoire of A. hydrophila include dissimilatory sulfate reduction and resistance mechanisms (such as thiopurine reductase, arsenate reductase, and phosphonate degradation enzymes) against toxic compounds encountered in polluted waters. These enzymes may have bioremediative as well as industrial potential. Thus, the A. hydrophila genome sequence provides valuable insights into its ability to flourish in both aquatic and host environments.

362 citations

Journal ArticleDOI
TL;DR: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture, and epigenetic mechanisms play a role in the functional diversification of duplicate genes.
Abstract: Background: Brassica oleracea is a valuable vegetable species that has contributed to human health and nutrition for hundreds of years and comprises multiple distinct cultivar groups with diverse morphological and phytochemical attributes. In addition to this phenotypic wealth, B. oleracea offers unique insights into polyploid evolution, as it results from multiple ancestral polyploidy events and a final Brassiceae-specific triplication event. Further, B. oleracea represents one of the diploid genomes that formed the economically important allopolyploid oilseed, Brassica napus. A deeper understanding of B. oleracea genome architecture provides a foundation for crop improvement strategies throughout the Brassica genus. Results: We generate an assembly representing 75% of the predicted B. oleracea genome using a hybrid Illumina/ Roche 454 approach. Two dense genetic maps are generated to anchor almost 92% of the assembled scaffolds to nine pseudo-chromosomes. Over 50,000 genes are annotated and 40% of the genome predicted to be repetitive, thus contributing to the increased genome size of B. oleracea compared to its close relative B. rapa. A snapshot of both the leaf transcriptome and methylome allows comparisons to be made across the triplicated sub-genomes, which resulted from the most recent Brassiceae-specific polyploidy event. Conclusions: Differential expression of the triplicated syntelogs and cytosine methylation levels across the sub-genomes suggest residual marks of the genome dominance that led to the current genome architecture. Although cytosine methylation does not correlate with individual gene dominance, the independent methylation patterns of triplicated copies suggest epigenetic mechanisms play a role in the functional diversification of duplicate genes.

362 citations

Journal ArticleDOI
TL;DR: The CIP RES RESTful application programmer interface (CRA), a web service that provides programmatic access to all resources and services currently offered by the CIPRES Science Gateway, is described.
Abstract: The CIPRES Science Gateway is a community web application that provides public access to a set of parallel tree inference and multiple sequence alignment codes run on large computational resources. These resources are made available at no charge to users by the NSF Extreme Science and Engineering Discovery Environment (XSEDE) project. Here we describe the CIPRES RESTful application programmer interface (CRA), a web service that provides programmatic access to all resources and services currently offered by the CIPRES Science Gateway. Software developers can use the CRA to extend their web or desktop applications to include the ability to run MrBayes, BEAST, RAxML, MAFFT, and other computationally intensive algorithms on XSEDE. The CRA also makes it possible for individuals with modest scripting skills to access the same tools from the command line using curl, or through any scripting language. This report describes the CRA and its use in three web applications (Influenza Research Database – www.fludb.org, Virus Pathogen Resource – www.viprbrc.org, and MorphoBank – www.morphobank.org). The CRA is freely accessible to registered users at https://cipresrest.sdsc.edu/cipresrest/v1; supporting documentation and registration tools are available at https://www.phylo.org/restusers.

360 citations


Authors

Showing all 1274 results

NameH-indexPapersCitations
John R. Yates1771036129029
Anders M. Dale156823133891
Ronald W. Davis155644151276
Steven L. Salzberg147407231756
Mark Raymond Adams1471187135038
Nicholas J. Schork12558762131
William R. Jacobs11849048638
Ian T. Paulsen11235469460
Michael B. Brenner11139344771
Kenneth H. Nealson10848351100
Claire M. Fraser10835276292
Stephen L. Hoffman10445838597
Michael J. Brownstein10227447929
Amalio Telenti10242140509
John Quackenbush9942767029
Network Information
Related Institutions (5)
Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

Broad Institute
11.6K papers, 1.5M citations

92% related

Cold Spring Harbor Laboratory
6.6K papers, 1M citations

92% related

Pasteur Institute
50.3K papers, 2.5M citations

92% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202211
2021116
2020141
2019154
2018157