scispace - formally typeset
Search or ask a question
Institution

J. Craig Venter Institute

NonprofitLa Jolla, California, United States
About: J. Craig Venter Institute is a nonprofit organization based out in La Jolla, California, United States. It is known for research contribution in the topics: Genome & Gene. The organization has 1268 authors who have published 2300 publications receiving 304083 citations. The organization is also known as: JCVI & The Institute for Genomic Research.
Topics: Genome, Gene, Genomics, Population, Microbiome


Papers
More filters
Journal ArticleDOI
29 Apr 2016-PLOS ONE
TL;DR: The state of OBI and several applications that are using it are described, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources.
Abstract: The Ontology for Biomedical Investigations (OBI) is an ontology that provides terms with precisely defined meanings to describe all aspects of how investigations in the biological and medical domains are conducted. OBI re-uses ontologies that provide a representation of biomedical knowledge from the Open Biological and Biomedical Ontologies (OBO) project and adds the ability to describe how this knowledge was derived. We here describe the state of OBI and several applications that are using it, such as adding semantic expressivity to existing databases, building data entry forms, and enabling interoperability between knowledge resources. OBI covers all phases of the investigation process, such as planning, execution and reporting. It represents information and material entities that participate in these processes, as well as roles and functions. Prior to OBI, it was not possible to use a single internally consistent resource that could be applied to multiple types of experiments for these applications. OBI has made this possible by creating terms for entities involved in biological and medical investigations and by importing parts of other biomedical ontologies such as GO, Chemical Entities of Biological Interest (ChEBI) and Phenotype Attribute and Trait Ontology (PATO) without altering their meaning. OBI is being used in a wide range of projects covering genomics, multi-omics, immunology, and catalogs of services. OBI has also spawned other ontologies (Information Artifact Ontology) and methods for importing parts of ontologies (Minimum information to reference an external ontology term (MIREOT)). The OBI project is an open cross-disciplinary collaborative effort, encompassing multiple research communities from around the globe. To date, OBI has created 2366 classes and 40 relations along with textual and formal definitions. The OBI Consortium maintains a web resource (http://obi-ontology.org) providing details on the people, policies, and issues being addressed in association with OBI. The current release of OBI is available at http://purl.obolibrary.org/obo/obi.owl.

265 citations

Journal ArticleDOI
TL;DR: The results from these analyses highlight the role in the gastrointestinal tract of Prevotella ruminicola and bryantii, and provide a template for additional work on genetic characterization of these species.
Abstract: The Prevotellas comprise a diverse group of bacteria that has received surprisingly limited attention at the whole genome-sequencing level. In this communication, we present the comparative analysis of the genomes of Prevotella ruminicola 23 (GenBank: CP002006) and Prevotella bryantii B14 (GenBank: ADWO00000000), two gastrointestinal isolates. Both P. ruminicola and P. bryantii have acquired an extensive repertoire of glycoside hydrolases that are targeted towards non-cellulosic polysaccharides, especially GH43 bifunctional enzymes. Our analysis demonstrates the diversity of this genus. The results from these analyses highlight their role in the gastrointestinal tract, and provide a template for additional work on genetic characterization of these species.

265 citations

Journal ArticleDOI
TL;DR: It is shown that the two species, S. officinarum and S. spontaneum, involved in modern cultivars differ by their transposable elements and by a few large chromosomal rearrangements, explaining their distinct genome size and distinct basic chromosome numbers while also suggesting that polyploidization arose in both lineages after their divergence.
Abstract: Sugarcane (Saccharum spp.) is a major crop for sugar and bioenergy production. Its highly polyploid, aneuploid, heterozygous, and interspecific genome poses major challenges for producing a reference sequence. We exploited colinearity with sorghum to produce a BAC-based monoploid genome sequence of sugarcane. A minimum tiling path of 4660 sugarcane BAC that best covers the gene-rich part of the sorghum genome was selected based on whole-genome profiling, sequenced, and assembled in a 382-Mb single tiling path of a high-quality sequence. A total of 25,316 protein-coding gene models are predicted, 17% of which display no colinearity with their sorghum orthologs. We show that the two species, S. officinarum and S. spontaneum, involved in modern cultivars differ by their transposable elements and by a few large chromosomal rearrangements, explaining their distinct genome size and distinct basic chromosome numbers while also suggesting that polyploidization arose in both lineages after their divergence.

265 citations

Journal ArticleDOI
TL;DR: Joint biallelic hits in SMAD2 and SMAD3 were overrepresented and mutually exclusive to SMAD4 mutation, underlining the critical roles of these three proteins within the TGF-β signaling pathway.
Abstract: Activation of the canonical TGF-β signaling pathway provides growth inhibitory signals in the normal intestinal epithelium. Colorectal cancers (CRCs) frequently harbor somatic mutations in the pathway members TGFBR2 and SMAD4, but to what extent mutations in SMAD2 or SMAD3 contribute to tumorigenesis is unclear. A cohort of 744 primary CRCs and 36 CRC cell lines were sequenced for SMAD4, SMAD2, and SMAD3 and analyzed for allelic loss by single-nucleotide polymorphism (SNP) microarray analysis. Mutation spectra were compared between the genes, the pathogenicity of mutations was assessed, and relationships with clinicopathologic features were examined. The prevalence of SMAD4, SMAD2, and SMAD3 mutations in sporadic CRCs was 8.6% (64 of 744), 3.4% (25 of 744), and 4.3% (32 of 744), respectively. A significant overrepresentation of two genetic hits was detected for SMAD4 and SMAD3, consistent with these genes acting as tumor suppressors. SMAD4 mutations were associated with mucinous histology. The mutation spectra of SMAD2 and SMAD3 were highly similar to that of SMAD4, both in mutation type and location within the encoded proteins. In silico analyses suggested the majority of the mutations were pathogenic, with most missense changes predicted to reduce protein stability or hinder SMAD complex formation. The latter altered interface residues or disrupted the phosphorylation-regulated Ser-Ser-X-Ser motifs within SMAD2 and SMAD3. Functional analyses of selected mutations showed reductions in SMAD3 transcriptional activity and SMAD2-SMAD4 complex formation. Joint biallelic hits in SMAD2 and SMAD3 were overrepresented and mutually exclusive to SMAD4 mutation, underlining the critical roles of these three proteins within the TGF-β signaling pathway.

264 citations

Journal ArticleDOI
04 Nov 2010-Nature
TL;DR: The sequencing of 137 diverse marine isolates collected from around the world is analysed to gain insights into the ecology of the surface ocean prokaryotic picoplankton and suggests that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass.
Abstract: The understanding of marine microbial ecology and metabolism has been hampered by the paucity of sequenced reference genomes. To this end, we report the sequencing of 137 diverse marine isolates collected from around the world. We analysed these sequences, along with previously published marine prokaryotic genomes, in the context of marine metagenomic data, to gain insights into the ecology of the surface ocean prokaryotic picoplankton (0.1–3.0 μm size range). The results suggest that the sequenced genomes define two microbial groups: one composed of only a few taxa that are nearly always abundant in picoplanktonic communities, and the other consisting of many microbial taxa that are rarely abundant. The genomic content of the second group suggests that these microbes are capable of slow growth and survival in energy-limited environments, and rapid growth in energy-rich environments. By contrast, the abundant and cosmopolitan picoplanktonic prokaryotes for which there is genomic representation have smaller genomes, are probably capable of only slow growth and seem to be relatively unable to sense or rapidly acclimate to energy-rich conditions. Their genomic features also lead us to propose that one method used to avoid predation by viruses and/or bacterivores is by means of slow growth and the maintenance of low biomass. Using newly derived genome sequences of 137 microbial isolates collected from a variety of marine environments around the world, together with previously obtained genome and metagenome data, Shibu Yooseph and colleagues have obtained an overview of the ecology of the ocean surface-dwelling plankton community. Two main microbial groups emerge. The first contains many microbial taxa that are rarely abundant and seem to be adapted to a 'feast or famine' lifestyle of rapid growth in energy-rich environments and slow growth during food scarcity. The second group consists of a few taxa of abundant and cosmopolitan plankton that are usually always plentiful. These largely uncultured microbes have relatively small genomes and may avoid predation by growing slowly and maintaining low biomass. Using newly derived genome sequences of 137 marine microbial isolates as well as previously obtained genome and metagenome data, this study presents a functional analysis of picoplankton residing in the ocean's surface layer.

263 citations


Authors

Showing all 1274 results

NameH-indexPapersCitations
John R. Yates1771036129029
Anders M. Dale156823133891
Ronald W. Davis155644151276
Steven L. Salzberg147407231756
Mark Raymond Adams1471187135038
Nicholas J. Schork12558762131
William R. Jacobs11849048638
Ian T. Paulsen11235469460
Michael B. Brenner11139344771
Kenneth H. Nealson10848351100
Claire M. Fraser10835276292
Stephen L. Hoffman10445838597
Michael J. Brownstein10227447929
Amalio Telenti10242140509
John Quackenbush9942767029
Network Information
Related Institutions (5)
Wellcome Trust Sanger Institute
9.6K papers, 1.2M citations

94% related

Broad Institute
11.6K papers, 1.5M citations

92% related

Cold Spring Harbor Laboratory
6.6K papers, 1M citations

92% related

Pasteur Institute
50.3K papers, 2.5M citations

92% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20233
202211
2021116
2020141
2019154
2018157