scispace - formally typeset
Search or ask a question
Institution

Nanyang Technological University

EducationSingapore, Singapore
About: Nanyang Technological University is a education organization based out in Singapore, Singapore. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 48003 authors who have published 112815 publications receiving 3294199 citations. The organization is also known as: NTU & Universiti Teknologi Nanyang.


Papers
More filters
Journal ArticleDOI
06 Jun 2011-Small
TL;DR: The covalent functionalization of graphene oxide (GO) with chitosan (CS) is successfully accomplished via a facile amidation process, and the resulting GO-CS/pDNA nanoparticles exhibit reasonable transfection efficiency in HeLa cells at certain nitrogen/phosphate ratios.
Abstract: The covalent functionalization of graphene oxide (GO) with chitosan (CS) is successfully accomplished via a facile amidation process. The CS-grafted GO (GO-CS) sheets consist of about 64 wt.% CS, which imparts them with a good aqueous solubility and biocompatibility. Additionally, the physicochemical properties of GO-CS are studied. As a novel nanocarrier, GO-CS is applied to load a water-insoluble anticancer drug, camptothecin (CPT), via π-π stacking and hydrophobic interactions. It is demonstrated that GO-CS possesses a superior loading capacity for CPT, and the GO-CS-CPT complexes show remarkably high cytotoxicity in HepG2 and HeLa cell lines compared to the pure drug. At the same time, GO-CS is also able to condense plasmid DNA into stable, nanosized complexes, and the resulting GO-CS/pDNA nanoparticles exhibit reasonable transfection efficiency in HeLa cells at certain nitrogen/phosphate ratios. Therefore, the GO-CS nanocarrier is able to load and deliver both anticancer drugs and genes.

793 citations

Journal ArticleDOI
TL;DR: In this article, a large sample of mergers in the US was used to examine whether corporate social responsibility (CSR) creates value for acquiring firms' shareholders, and they found that high CSR acquirers realize higher merger announcement returns, higher announcement returns on the value-weighted portfolio of the acquirer and the target, and larger increases in postmerger long-term operating performance.

787 citations

Journal ArticleDOI
TL;DR: A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers filled with MnO2 nanosheets, which efficiently prevents polysulfide dissolution in Lithium-sulfur batteries.
Abstract: Lithium–sulfur batteries have been investigated as promising electrochemical-energy storage systems owing to their high theoretical energy density. Sulfur-based cathodes must not only be highly conductive to enhance the utilization of sulfur, but also effectively confine polysulfides to mitigate their dissolution. A new physical and chemical entrapment strategy is based on a highly efficient sulfur host, namely hollow carbon nanofibers (HCFs) filled with MnO2 nanosheets. Benefiting from both the HCFs and birnessite-type MnO2 nanosheets, the MnO2@HCF hybrid host not only facilitates electron and ion transfer during the redox reactions, but also efficiently prevents polysulfide dissolution. With a high sulfur content of 71 wt % in the composite and an areal sulfur mass loading of 3.5 mg cm−2 in the electrode, the MnO2@HCF/S electrode delivered a specific capacity of 1161 mAh g−1 (4.1 mAh cm−2) at 0.05 C and maintained a stable cycling performance at 0.5 C over 300 cycles.

787 citations

Journal ArticleDOI
TL;DR: Some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices are reviewed.
Abstract: In addition to their conventional uses, metal-organic frameworks (MOFs) have recently emerged as an interesting class of functional materials and precursors of inorganic materials for electrochemical energy storage and conversion technologies. This class of MOF-related materials can be broadly categorized into two groups: pristine MOF-based materials and MOF-derived functional materials. Although the diversity in composition and structure leads to diverse and tunable functionalities of MOF-based materials, it appears that much more effort in this emerging field is devoted to synthesizing MOF-derived materials for electrochemical applications. This is in view of two main drawbacks of MOF-based materials: the low conductivity nature and the stability issue. On the contrary, MOF-derived synthesis strategies have substantial advantages in controlling the composition and structure of MOF-derived materials. From this perspective, we review some emerging applications of both groups of MOF-related materials as electrode materials for rechargeable batteries and electrochemical capacitors, efficient electrocatalysts, and even electrolytes for electrochemical devices. By highlighting the advantages and challenges of each class of materials for different applications, we hope to shed some light on the future development of this highly exciting area.

786 citations

Journal ArticleDOI
TL;DR: As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications and can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect.
Abstract: As an emerging class of porous crystalline materials, covalent organic frameworks (COFs) are excellent candidates for various applications. In particular, they can serve as ideal platforms for capturing CO2 to mitigate the dilemma caused by the greenhouse effect. Recent research achievements using COFs for CO2 capture are highlighted. A background overview is provided, consisting of a brief statement on the current CO2 issue, a summary of representative materials utilized for CO2 capture, and an introduction to COFs. Research progresses on: i) experimental CO2 capture using different COFs synthesized based on different covalent bond formations, and ii) computational simulation results of such porous materials on CO2 capture are summarized. Based on these experimental and theoretical studies, careful analyses and discussions in terms of the COF stability, low- and high-pressure CO2 uptake, CO2 selectivity, breakthrough performance, and CO2 capture conditions are provided. Finally, a perspective and conclusion section of COFs for CO2 capture is presented. Recent advancements in the field are highlighted and the strategies and principals involved are discussed.

786 citations


Authors

Showing all 48605 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Yang Gao1682047146301
Gang Chen1673372149819
Chad A. Mirkin1641078134254
Hua Zhang1631503116769
Xiang Zhang1541733117576
Vivek Sharma1503030136228
Seeram Ramakrishna147155299284
Frede Blaabjerg1472161112017
Yi Yang143245692268
Joseph J.Y. Sung142124092035
Shi-Zhang Qiao14252380888
Paul M. Matthews14061788802
Bin Liu138218187085
George C. Schatz137115594910
Network Information
Related Institutions (5)
Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

96% related

National University of Singapore
165.4K papers, 5.4M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

95% related

Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023201
20221,324
20217,990
20208,387
20197,843
20187,247