scispace - formally typeset
Search or ask a question
Institution

Nanyang Technological University

EducationSingapore, Singapore
About: Nanyang Technological University is a education organization based out in Singapore, Singapore. It is known for research contribution in the topics: Computer science & Catalysis. The organization has 48003 authors who have published 112815 publications receiving 3294199 citations. The organization is also known as: NTU & Universiti Teknologi Nanyang.


Papers
More filters
Journal ArticleDOI
TL;DR: Extremely stretchable self‐healing strain sensors based on conductive hydrogels are successfully fabricated and have good response, signal stability, and repeatability under various human motion detections.
Abstract: Extremely stretchable self-healing strain sensors based on conductive hydrogels are successfully fabricated. The strain sensor can achieve autonomic self-heal electrically and mechanically under ambient conditions, and can sustain extreme elastic strain (1000%) with high gauge factor of 1.51. Furthermore, the strain sensors have good response, signal stability, and repeatability under various human motion detections.

711 citations

Proceedings ArticleDOI
07 Sep 2014
TL;DR: Differential Augmented Hologram (DAH) is proposed which will facilitate the instant tracking of the mobile RFID tag to a high precision and devise a comprehensive solution to accurately recover the tag's moving trajectories and its locations.
Abstract: In many applications, we have to identify an object and then locate the object to within high precision (centimeter- or millimeter-level). Legacy systems that can provide such accuracy are either expensive or suffering from performance degradation resulting from various impacts, e.g., occlusion for computer vision based approaches. In this work, we present an RFID-based system, Tagoram, for object localization and tracking using COTS RFID tags and readers. Tracking mobile RFID tags in real time has been a daunting task, especially challenging for achieving high precision. Our system achieves these three goals by leveraging the phase value of the backscattered signal, provided by the COTS RFID readers, to estimate the location of the object. In Tagoram, we exploit the tag's mobility to build a virtual antenna array by using readings from a few physical antennas over a time window. To illustrate the basic idea of our system, we firstly focus on a simple scenario where the tag is moving along a fixed track known to the system. We propose Differential Augmented Hologram (DAH) which will facilitate the instant tracking of the mobile RFID tag to a high precision. We then devise a comprehensive solution to accurately recover the tag's moving trajectories and its locations, relaxing the assumption of knowing tag's track function in advance. We have implemented the Tagoram system using COTS RFID tags and readers. The system has been tested extensively in the lab environment and used for more than a year in real airline applications. For lab environment, we can track the mobile tags in real time with a millimeter accuracy to a median of 5mm and 7.29mm using linear and circular track respectively. In our year- long large scale baggage sortation systems deployed in two airports, our results from real deployments show that Tagoram can achieve a centimeter-level accuracy to a median of 6.35cm in these real deployments.

711 citations

Journal ArticleDOI
01 Jul 2017-Small
TL;DR: This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems, and presents an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezos-electrical, capacitive, and field effect transistor based devices.
Abstract: Wearable or attachable health monitoring smart systems are considered to be the next generation of personal portable devices for remote medicine practices. Smart flexible sensing electronics are components crucial in endowing health monitoring systems with the capability of real-time tracking of physiological signals. These signals are closely associated with body conditions, such as heart rate, wrist pulse, body temperature, blood/intraocular pressure and blood/sweat bio-information. Monitoring such physiological signals provides a convenient and non-invasive way for disease diagnoses and health assessments. This Review summarizes the recent progress of flexible sensing electronics for their use in wearable/attachable health monitoring systems. Meanwhile, we present an overview of different materials and configurations for flexible sensors, including piezo-resistive, piezo-electrical, capacitive, and field effect transistor based devices, and analyze the working principles in monitoring physiological signals. In addition, the future perspectives of wearable healthcare systems and the technical demands on their commercialization are briefly discussed.

708 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the hydrothermal carbonization (HTC) process to convert sewage sludge into clean solid fuel without prior drying, and evaluated the fuel characteristics and combustion behaviors of hydrochars.

706 citations

Book
30 May 2013
TL;DR: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation.
Abstract: This special issue includes eight original works that detail the further developments of ELMs in theories, applications, and hardware implementation. In "Representational Learning with ELMs for Big Data," Liyanaarachchi Lekamalage Chamara Kasun, Hongming Zhou, Guang-Bin Huang, and Chi Man Vong propose using the ELM as an auto-encoder for learning feature representations using singular values. In "A Secure and Practical Mechanism for Outsourcing ELMs in Cloud Computing," Jiarun Lin, Jianping Yin, Zhiping Cai, Qiang Liu, Kuan Li, and Victor C.M. Leung propose a method for handling large data applications by outsourcing to the cloud that would dramatically reduce ELM training time. In "ELM-Guided Memetic Computation for Vehicle Routing," Liang Feng, Yew-Soon Ong, and Meng-Hiot Lim consider the ELM as an engine for automating the encapsulation of knowledge memes from past problem-solving experiences. In "ELMVIS: A Nonlinear Visualization Technique Using Random Permutations and ELMs," Anton Akusok, Amaury Lendasse, Rui Nian, and Yoan Miche propose an ELM method for data visualization based on random permutations to map original data and their corresponding visualization points. In "Combining ELMs with Random Projections," Paolo Gastaldo, Rodolfo Zunino, Erik Cambria, and Sergio Decherchi analyze the relationships between ELM feature-mapping schemas and the paradigm of random projections. In "Reduced ELMs for Causal Relation Extraction from Unstructured Text," Xuefeng Yang and Kezhi Mao propose combining ELMs with neuron selection to optimize the neural network architecture and improve the ELM ensemble's computational efficiency. In "A System for Signature Verification Based on Horizontal and Vertical Components in Hand Gestures," Beom-Seok Oh, Jehyoung Jeon, Kar-Ann Toh, Andrew Beng Jin Teoh, and Jaihie Kim propose a novel paradigm for hand signature biometry for touchless applications without the need for handheld devices. Finally, in "An Adaptive and Iterative Online Sequential ELM-Based Multi-Degree-of-Freedom Gesture Recognition System," Hanchao Yu, Yiqiang Chen, Junfa Liu, and Guang-Bin Huang propose an online sequential ELM-based efficient gesture recognition algorithm for touchless human-machine interaction.

705 citations


Authors

Showing all 48605 results

NameH-indexPapersCitations
Michael Grätzel2481423303599
Yang Gao1682047146301
Gang Chen1673372149819
Chad A. Mirkin1641078134254
Hua Zhang1631503116769
Xiang Zhang1541733117576
Vivek Sharma1503030136228
Seeram Ramakrishna147155299284
Frede Blaabjerg1472161112017
Yi Yang143245692268
Joseph J.Y. Sung142124092035
Shi-Zhang Qiao14252380888
Paul M. Matthews14061788802
Bin Liu138218187085
George C. Schatz137115594910
Network Information
Related Institutions (5)
Hong Kong University of Science and Technology
52.4K papers, 1.9M citations

96% related

National University of Singapore
165.4K papers, 5.4M citations

96% related

Georgia Institute of Technology
119K papers, 4.6M citations

95% related

Tsinghua University
200.5K papers, 4.5M citations

95% related

Royal Institute of Technology
68.4K papers, 1.9M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023201
20221,324
20217,990
20208,387
20197,843
20187,247