scispace - formally typeset
Search or ask a question

Showing papers by "Nanyang Technological University published in 2013"


Journal ArticleDOI
TL;DR: This Review describes how the tunable electronic structure of TMDs makes them attractive for a variety of applications, as well as electrically active materials in opto-electronics.
Abstract: Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-type), varies between compounds depending on their composition, structure and dimensionality. In this Review, we describe how the tunable electronic structure of TMDs makes them attractive for a variety of applications. They have been investigated as chemically active electrocatalysts for hydrogen evolution and hydrosulfurization, as well as electrically active materials in opto-electronics. Their morphologies and properties are also useful for energy storage applications such as electrodes for Li-ion batteries and supercapacitors.

7,903 citations


Journal ArticleDOI
18 Oct 2013-Science
TL;DR: Two studies show, using a variety of time-resolved absorption and emission spectroscopic techniques, that perovskite materials manifest relatively long diffusion paths for charge carriers energized by light absorption, highlighting effective carrier diffusion as a fruitful parameter for further optimization.
Abstract: Low-temperature solution-processed photovoltaics suffer from low efficiencies because of poor exciton or electron-hole diffusion lengths (typically about 10 nanometers). Recent reports of highly efficient CH3NH3PbI3-based solar cells in a broad range of configurations raise a compelling case for understanding the fundamental photophysical mechanisms in these materials. By applying femtosecond transient optical spectroscopy to bilayers that interface this perovskite with either selective-electron or selective-hole extraction materials, we have uncovered concrete evidence of balanced long-range electron-hole diffusion lengths of at least 100 nanometers in solution-processed CH3NH3PbI3. The high photoconversion efficiencies of these systems stem from the comparable optical absorption length and charge-carrier diffusion lengths, transcending the traditional constraints of solution-processed semiconductors.

5,882 citations


Journal ArticleDOI
TL;DR: Low onset overpotential and small Tafel slope, along with large cathodic current density and excellent durability, are all achieved for the novel hydrogen-evolution-reaction electrocatalyst.
Abstract: Defect-rich MoS2 ultrathin nanosheets are synthesized on a gram scale for electrocatalytic hydrogen evolution. The novel defect-rich structure introduces additional active edge sites into the MoS2 ultrathin nanosheets, which significantly improves their electrocatalytic performance. Low onset overpotential and small Tafel slope, along with large cathodic current density and excellent durability, are all achieved for the novel hydrogen-evolution-reaction electrocatalyst.

2,598 citations


Journal ArticleDOI
Cristen J. Willer1, Ellen M. Schmidt1, Sebanti Sengupta1, Gina M. Peloso2  +316 moreInstitutions (87)
TL;DR: It is found that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index.
Abstract: Levels of low-density lipoprotein (LDL) cholesterol, high-density lipoprotein (HDL) cholesterol, triglycerides and total cholesterol are heritable, modifiable risk factors for coronary artery disease. To identify new loci and refine known loci influencing these lipids, we examined 188,577 individuals using genome-wide and custom genotyping arrays. We identify and annotate 157 loci associated with lipid levels at P < 5 × 10(-8), including 62 loci not previously associated with lipid levels in humans. Using dense genotyping in individuals of European, East Asian, South Asian and African ancestry, we narrow association signals in 12 loci. We find that loci associated with blood lipid levels are often associated with cardiovascular and metabolic traits, including coronary artery disease, type 2 diabetes, blood pressure, waist-hip ratio and body mass index. Our results demonstrate the value of using genetic data from individuals of diverse ancestry and provide insights into the biological mechanisms regulating blood lipids to guide future genetic, biological and therapeutic research.

2,585 citations


Journal ArticleDOI
TL;DR: The re-engineering of navitoclax is reported to create a highly potent, orally bioavailable and BCL-2–selective inhibitor, ABT-199, which inhibits the growth of BCL–dependent tumors in vivo and spares human platelets, indicating that selective pharmacological inhibition of Bcl-2 shows promise for the treatment of B CL-2-dependent hematological cancers.
Abstract: Proteins in the B cell CLL/lymphoma 2 (BCL-2) family are key regulators of the apoptotic process. This family comprises proapoptotic and prosurvival proteins, and shifting the balance toward the latter is an established mechanism whereby cancer cells evade apoptosis. The therapeutic potential of directly inhibiting prosurvival proteins was unveiled with the development of navitoclax, a selective inhibitor of both BCL-2 and BCL-2-like 1 (BCL-X(L)), which has shown clinical efficacy in some BCL-2-dependent hematological cancers. However, concomitant on-target thrombocytopenia caused by BCL-X(L) inhibition limits the efficacy achievable with this agent. Here we report the re-engineering of navitoclax to create a highly potent, orally bioavailable and BCL-2-selective inhibitor, ABT-199. This compound inhibits the growth of BCL-2-dependent tumors in vivo and spares human platelets. A single dose of ABT-199 in three patients with refractory chronic lymphocytic leukemia resulted in tumor lysis within 24 h. These data indicate that selective pharmacological inhibition of BCL-2 shows promise for the treatment of BCL-2-dependent hematological cancers.

2,353 citations


Journal ArticleDOI
TL;DR: A survey of MCC is given, which helps general readers have an overview of the MCC including the definition, architecture, and applications and the issues, existing solutions, and approaches are presented.
Abstract: Together with an explosive growth of the mobile applications and emerging of cloud computing concept, mobile cloud computing (MCC) has been introduced to be a potential technology for mobile services. MCC integrates the cloud computing into the mobile environment and overcomes obstacles related to the performance (e.g., battery life, storage, and bandwidth), environment (e.g., heterogeneity, scalability, and availability), and security (e.g., reliability and privacy) discussed in mobile computing. This paper gives a survey of MCC, which helps general readers have an overview of the MCC including the definition, architecture, and applications. The issues, existing solutions, and approaches are presented. In addition, the future research directions of MCC are discussed. Copyright © 2011 John Wiley & Sons, Ltd.

2,259 citations


Journal ArticleDOI
TL;DR: In this paper, a detailed description of the preparation, structural characterisation and physical characteristics of hybrid organic-inorganic perovskite (CH3NH3)PbI3 is presented.
Abstract: The hybrid organic–inorganic perovskite (CH3NH3)PbI3 may find application in next generation solid-state sensitised solar cells. Although this material and related perovskites were discovered many decades ago, questions remain concerning their diverse structural chemistry and unusual properties. The article presents a review of previous work and provides a detailed description of the preparation, structural characterisation and physical characteristics of (CH3NH3)PbI3. The phase changes exhibited by (CH3NH3)PbI3 have been probed using variable temperature powder and single crystal X-ray diffraction, combined with differential scanning calorimetry, thermogravimetric analysis and phase contrast transmission electron microscopy. The optical band gap for (CH3NH3)PbI3 determined by UV-Visible spectroscopy was compared to values obtained from density-of-state simulation of the electronic band structure.

2,132 citations


Journal ArticleDOI
TL;DR: The ability of pore size and porosity of scaffolds to direct cellular responses and alter the mechanical properties of scaffold will be reviewed, followed by a look at nature's own scaffold, the extracellular matrix.
Abstract: Tissue engineering applications commonly encompass the use of three-dimensional (3D) scaffolds to provide a suitable microenvironment for the incorporation of cells or growth factors to regenerate ...

2,075 citations


Journal ArticleDOI
TL;DR: A new type and high density of surface state of GQDs arises, leading to high yields (more than 70 %) and excitation-independent emission and FLQY = fluorescence quantum yield.
Abstract: Helpful elements: A facile bottom-up method using citric acid and L-cysteine as a precursor has been developed to prepare graphene quantum dots (GQDs) co-doped with nitrogen and sulfur. A new type and high density of surface state of GQDs arises, leading to high yields (more than 70 %) and excitation-independent emission. FLQY = fluorescence quantum yield.

1,887 citations


Journal ArticleDOI
TL;DR: This tutorial review will take MoS(2) as a typical example to introduce the latest research development of 2D inorganic nanomaterials with emphasis on their preparation methods, properties and applications.
Abstract: Two-dimensional (2D) nanomaterials have received much attention in recent years, because of their unusual properties associated with their ultra-thin thickness and 2D morphology. Besides graphene which has aroused tremendous research interest, other types of 2D nanomaterials such as metal dichalcogenides have also been studied and applied in various applications including electronics, optoelectronics, energy storage devices, and so on. In this tutorial review, we will take MoS2 as a typical example to introduce the latest research development of 2D inorganic nanomaterials with emphasis on their preparation methods, properties and applications.

1,748 citations


Journal ArticleDOI
22 Jan 2013-ACS Nano
TL;DR: In this paper, the authors report differential reflectance and PL spectra of mono-to-few-layer Molybdenum disulfide (MoS2) and WSe2 that indicate that the band structure of these materials undergoes similar indirect-todirect gap transition when thinned to a single monolayer.
Abstract: Geometrical confinement effect in exfoliated sheets of layered materials leads to significant evolution of energy dispersion in mono- to few-layer thickness regime. Molybdenum disulfide (MoS2) was recently found to exhibit indirect-to-direct gap transition when the thickness is reduced to a single monolayer. Emerging photoluminescence (PL) from monolayer MoS2 opens up opportunities for a range of novel optoelectronic applications of the material. Here we report differential reflectance and PL spectra of mono- to few-layer WS2 and WSe2 that indicate that the band structure of these materials undergoes similar indirect-to-direct gap transition when thinned to a single monolayer. The transition is evidenced by distinctly enhanced PL peak centered at 630 and 750 nm in monolayer WS2 and WSe2, respectively. Few-layer flakes are found to exhibit comparatively strong indirect gap emission along with direct gap hot electron emission, suggesting high quality of synthetic crystals prepared by a chemical vapor transp...

Journal ArticleDOI
TL;DR: Decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids that mimic the behavior of the mains grid is reviewed.
Abstract: This paper presents a review of advanced control techniques for microgrids. This paper covers decentralized, distributed, and hierarchical control of grid-connected and islanded microgrids. At first, decentralized control techniques for microgrids are reviewed. Then, the recent developments in the stability analysis of decentralized controlled microgrids are discussed. Finally, hierarchical control for microgrids that mimic the behavior of the mains grid is reviewed.

Journal ArticleDOI
TL;DR: A comprehensive review of recent Kinect-based computer vision algorithms and applications covering topics including preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping.
Abstract: With the invention of the low-cost Microsoft Kinect sensor, high-resolution depth and visual (RGB) sensing has become available for widespread use. The complementary nature of the depth and visual information provided by the Kinect sensor opens up new opportunities to solve fundamental problems in computer vision. This paper presents a comprehensive review of recent Kinect-based computer vision algorithms and applications. The reviewed approaches are classified according to the type of vision problems that can be addressed or enhanced by means of the Kinect sensor. The covered topics include preprocessing, object tracking and recognition, human activity analysis, hand gesture analysis, and indoor 3-D mapping. For each category of methods, we outline their main algorithmic contributions and summarize their advantages/differences compared to their RGB counterparts. Finally, we give an overview of the challenges in this field and future research trends. This paper is expected to serve as a tutorial and source of references for Kinect-based computer vision researchers.

Journal ArticleDOI
TL;DR: In this article, a review of 3D carbon-based nanostructures for advanced supercapacitor applications is presented, which includes CNTs-based networks, graphene-based architectures, hierarchical porous carbon-bimodal structures, and other even more complex 3D configurations.
Abstract: Supercapacitors have attracted intense attention due to their great potential to meet the demand of both high energy density and power density in many advanced technologies. Various carbon-based nanocomposites are currently pursued as supercapacitor electrodes because of the synergistic effect between carbon (high power density) and pseudo-capacitive nanomaterials (high energy density). This feature article aims to review most recent progress on 3D (3D) carbon based nanostructures for advanced supercapacitor applications in view of their structural intertwinement which not only create the desired hierarchical porous channels, but also possess higher electrical conductivity and better structural mechanical stability. The carbon nanostructures comprise of CNTs-based networks, graphene-based architectures, hierarchical porous carbon-based nanostructures and other even more complex carbon-based 3D configurations. Their advantages and disadvantages are compared and summarized based on the results published in the literature. In addition, we also discuss and view the ongoing trends in materials development for advanced supercapacitors.

Journal ArticleDOI
05 Jul 2013-Science
TL;DR: This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins and validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues.
Abstract: The efficacy of therapeutics is dependent on a drug binding to its cognate target. Optimization of target engagement by drugs in cells is often challenging, because drug binding cannot be monitored inside cells. We have developed a method for evaluating drug binding to target proteins in cells and tissue samples. This cellular thermal shift assay (CETSA) is based on the biophysical principle of ligand-induced thermal stabilization of target proteins. Using this assay, we validated drug binding for a set of important clinical targets and monitored processes of drug transport and activation, off-target effects and drug resistance in cancer cell lines, as well as drug distribution in tissues. CETSA is likely to become a valuable tool for the validation and optimization of drug target engagement.

Journal ArticleDOI
TL;DR: It is shown that strong photoluminescence emission is caused by the transition from an indirect band gap semiconductor of bulk material to a direct bandgap semiconductor in atomically thin form.
Abstract: We mechanically exfoliate mono- and few-layers of the transition metal dichalcogenides molybdenum disulfide, molybdenum diselenide, and tungsten diselenide. The exact number of layers is unambiguously determined by atomic force microscopy and high-resolution Raman spectroscopy. Strong photoluminescence emission is caused by the transition from an indirect band gap semiconductor of bulk material to a direct band gap semiconductor in atomically thin form.

Journal ArticleDOI
14 Jan 2013-Small
TL;DR: The as-prepared TiO( 2)@MoS(2) heterostructure shows a high photocatalytic hydrogen production even without the Pt co-catalyst and possesses a strong adsorption ability towards organic dyes and shows high performance in photocatallytic degradation of the dye molecules.
Abstract: MoS(2) nanosheet-coated TiO(2) nanobelt heterostructures--referred to as TiO(2)@MoS(2)--with a 3D hierarchical configuration are prepared via a hydrothermal reaction. The TiO(2) nanobelts used as a synthetic template inhibit the growth of MoS(2) crystals along the c-axis, resulting in a few-layer MoS(2) nanosheet coating on the TiO(2) nanobelts. The as-prepared TiO(2)@MoS(2) heterostructure shows a high photocatalytic hydrogen production even without the Pt co-catalyst. Importantly, the TiO(2)@MoS(2) heterostructure with 50 wt% of MoS(2) exhibits the highest hydrogen production rate of 1.6 mmol h(-1) g(-1). Moreover, such a heterostructure possesses a strong adsorption ability towards organic dyes and shows high performance in photocatalytic degradation of the dye molecules.

Journal ArticleDOI
19 Apr 2013-Science
TL;DR: Plasmonic couplers that overcome limits in the polarization sensitivity of the coupling efficiency and in controlling the directionality of the SPPs are designed and demonstrated using polarization-sensitive apertures in a gold film.
Abstract: Light can be coupled into propagating electromagnetic surface waves at a metal-dielectric interface known as surface plasmon polaritons (SPPs). This process has traditionally faced challenges in the polarization sensitivity of the coupling efficiency and in controlling the directionality of the SPPs. We designed and demonstrated plasmonic couplers that overcome these limits using polarization-sensitive apertures in a gold film. Our devices enable polarization-controlled tunable directional coupling with polarization-invariant total conversion efficiency and preserve the incident polarization information. Both bidirectional and unidirectional launching of SPPs are demonstrated. The design is further applied to circular structures that create radially convergent and divergent SPPs, illustrating that this concept can be extended to a broad range of applications.


Journal ArticleDOI
TL;DR: A single-layer MoS2 nanosheet exhibits high fluorescence quenching ability and different affinity toward ssDNA versus dsDNA and has been successfully used as a sensing platform for the detection of DNA and small molecules.
Abstract: A single-layer MoS2 nanosheet exhibits high fluorescence quenching ability and different affinity toward ssDNA versus dsDNA. As a proof of concept, the MoS2 nanosheet has been successfully used as a sensing platform for the detection of DNA and small molecules.

Journal ArticleDOI
TL;DR: As a highly integrated binder- and conductive-agent-free electrode for supercapacitors, the mesoporous NiCo(2) O(4) nanosheets supported on Ni foam deliver ultrahigh capacitance and excellent high-rate cycling stability.
Abstract: Mesoporous NiCo(2) O(4) nanosheets can be directly grown on various conductive substrates, such as Ni foam, Ti foil, stainless-steel foil and flexible graphite paper, through a general template-free solution method combined with a simple post annealing treatment. As a highly integrated binder- and conductive-agent-free electrode for supercapacitors, the mesoporous NiCo(2) O(4) nanosheets supported on Ni foam deliver ultrahigh capacitance and excellent high-rate cycling stability.

Journal ArticleDOI
TL;DR: A Ni3S2 nanorods/Ni foam composite electrode is prepared as a high-performance catalyst for the oxygen evolution reaction (OER), which exhibits excellent OER activity with a small overpotential of ∼157 mV based on the onset of catalytic current as discussed by the authors.
Abstract: A Ni3S2 nanorods/Ni foam composite electrode is prepared as a high-performance catalyst for the oxygen evolution reaction (OER), which exhibits excellent OER activity with a small overpotential of ∼157 mV based on the onset of catalytic current.

Journal ArticleDOI
TL;DR: A continuous drop of voltage with increasing nanorod length correlated with charge generation efficiency rather than recombination kinetics with impedance spectroscopic characterization displaying similar recombination regardless of the nanorods length.
Abstract: We report a highly efficient solar cell based on a submicrometer (∼0.6 μm) rutile TiO2 nanorod sensitized with CH3NH3PbI3 perovskite nanodots. Rutile nanorods were grown hydrothermally and their lengths were varied through the control of the reaction time. Infiltration of spiro-MeOTAD hole transport material into the perovskite-sensitized nanorod films demonstrated photocurrent density of 15.6 mA/cm2, voltage of 955 mV, and fill factor of 0.63, leading to a power conversion efficiency (PCE) of 9.4% under the simulated AM 1.5G one sun illumination. Photovoltaic performance was significantly dependent on the length of the nanorods, where both photocurrent and voltage decreased with increasing nanorod lengths. A continuous drop of voltage with increasing nanorod length correlated with charge generation efficiency rather than recombination kinetics with impedance spectroscopic characterization displaying similar recombination regardless of the nanorod length.

Journal ArticleDOI
TL;DR: In this paper, a brief discussion is presented regarding the operating temperature of one-sun commercial grade silicon-based solar cells/modules and its effect upon the electrical performance of photovoltaic installations.

Journal ArticleDOI
Ron Do1, Cristen J. Willer2, Ellen M. Schmidt2, Sebanti Sengupta2  +263 moreInstitutions (83)
TL;DR: It is suggested that triglyceride-rich lipoproteins causally influence risk for CAD, and the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk.
Abstract: Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD. First, we highlight loci associated with both low-density lipoprotein cholesterol (LDL-C) and triglyceride levels, and we show that the direction and magnitude of the associations with both traits are factors in determining CAD risk. Second, we consider loci with only a strong association with triglycerides and show that these loci are also associated with CAD. Finally, in a model accounting for effects on LDL-C and/or high-density lipoprotein cholesterol (HDL-C) levels, the strength of a polymorphism's effect on triglyceride levels is correlated with the magnitude of its effect on CAD risk. These results suggest that triglyceride-rich lipoproteins causally influence risk for CAD.

Journal ArticleDOI
TL;DR: In this article, a large sample of mergers in the US was used to examine whether corporate social responsibility (CSR) creates value for acquiring firms' shareholders, and they found that high CSR acquirers realize higher merger announcement returns, higher announcement returns on the value-weighted portfolio of the acquirer and the target, and larger increases in postmerger long-term operating performance.

Journal ArticleDOI
TL;DR: A theoretical framework of energy-optimal mobile cloud computing under stochastic wireless channel is provided, and numerical results suggest that a significant amount of energy can be saved for the mobile device by optimally offloading mobile applications to the cloud in some cases.
Abstract: This paper provides a theoretical framework of energy-optimal mobile cloud computing under stochastic wireless channel. Our objective is to conserve energy for the mobile device, by optimally executing mobile applications in the mobile device (i.e., mobile execution) or offloading to the cloud (i.e., cloud execution). One can, in the former case sequentially reconfigure the CPU frequency; or in the latter case dynamically vary the data transmission rate to the cloud, in response to the stochastic channel condition. We formulate both scheduling problems as constrained optimization problems, and obtain closed-form solutions for optimal scheduling policies. Furthermore, for the energy-optimal execution strategy of applications with small output data (e.g., CloudAV), we derive a threshold policy, which states that the data consumption rate, defined as the ratio between the data size (L) and the delay constraint (T), is compared to a threshold which depends on both the energy consumption model and the wireless channel model. Finally, numerical results suggest that a significant amount of energy can be saved for the mobile device by optimally offloading mobile applications to the cloud in some cases. Our theoretical framework and numerical investigations will shed lights on system implementation of mobile cloud computing under stochastic wireless channel.

Journal ArticleDOI
TL;DR: The use of static synchronous compensator in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances and the coordinated control of distributed storage systems and ac/dc hybrid micro grids is explained.
Abstract: This paper summarizes the main problems and solutions of power quality in microgrids, distributed-energy-storage systems, and ac/dc hybrid microgrids. First, the power quality enhancement of grid-interactive microgrids is presented. Then, the cooperative control for enhance voltage harmonics and unbalances in microgrids is reviewed. Afterward, the use of static synchronous compensator (STATCOM) in grid-connected microgrids is introduced in order to improve voltage sags/swells and unbalances. Finally, the coordinated control of distributed storage systems and ac/dc hybrid microgrids is explained.

Journal ArticleDOI
TL;DR: The solution-processable two-dimensional MoS(2) nanosheet can be used to direct the epitaxial growth of Pd, Pt and Ag nanostructures at ambient conditions and exhibits much higher electrocatalytic activity towards the hydrogen evolution reaction compared with the commercial Pt catalysts with the same Pt loading.
Abstract: Compared with the conventional deposition techniques used for the epitaxial growth of metallic structures on a bulk substrate, wet-chemical synthesis based on the dispersible template offers several advantages, including relatively low cost, high throughput, and the capability to prepare metal nanostructures with controllable size and morphology. Here we demonstrate that the solution-processable two-dimensional MoS(2) nanosheet can be used to direct the epitaxial growth of Pd, Pt and Ag nanostructures at ambient conditions. These nanostructures show the major (111) and (101) orientations on the MoS(2)(001) surface. Importantly, the Pt-MoS(2) hybrid nanomaterials exhibit much higher electrocatalytic activity towards the hydrogen evolution reaction compared with the commercial Pt catalysts with the same Pt loading. We believe that nanosheet-templated epitaxial growth of nanostructures via wet-chemical reaction is a promising strategy towards the facile and high-yield production of novel functional materials.

Proceedings ArticleDOI
28 Jul 2013
TL;DR: This paper defines a new problem, namely, the time-aware POI recommendation, to recommend POIs for a given user at a specified time in a day, and develops a collaborative recommendation model that is able to incorporate temporal information.
Abstract: The availability of user check-in data in large volume from the rapid growing location based social networks (LBSNs) enables many important location-aware services to users. Point-of-interest (POI) recommendation is one of such services, which is to recommend places where users have not visited before. Several techniques have been recently proposed for the recommendation service. However, no existing work has considered the temporal information for POI recommendations in LBSNs. We believe that time plays an important role in POI recommendations because most users tend to visit different places at different time in a day, \eg visiting a restaurant at noon and visiting a bar at night. In this paper, we define a new problem, namely, the time-aware POI recommendation, to recommend POIs for a given user at a specified time in a day. To solve the problem, we develop a collaborative recommendation model that is able to incorporate temporal information. Moreover, based on the observation that users tend to visit nearby POIs, we further enhance the recommendation model by considering geographical information. Our experimental results on two real-world datasets show that the proposed approach outperforms the state-of-the-art POI recommendation methods substantially.