scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Turin

EducationTurin, Piemonte, Italy
About: Polytechnic University of Turin is a education organization based out in Turin, Piemonte, Italy. It is known for research contribution in the topics: Finite element method & Computer science. The organization has 11553 authors who have published 41395 publications receiving 789320 citations. The organization is also known as: POLITO & Politecnico di Torino.


Papers
More filters
Journal ArticleDOI
TL;DR: A new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions is presented, based on reconstructing a piecewise-polynomial interpolant from cell-averages which is then advanced exactly in time.
Abstract: We present a new third-order central scheme for approximating solutions of systems of conservation laws in one and two space dimensions. In the spirit of Godunov-type schemes, our method is based on reconstructing a piecewise-polynomial interpolant from cell-averages which is then advanced exactly in time. In the reconstruction step, we introduce a new third-order, compact, central weighted essentially nonoscillatory (CWENO) reconstruction, which is written as a convex combination of interpolants based on different stencils. The heart of the matter is that one of these interpolants is taken as a suitable quadratic polynomial, and the weights of the convex combination are set as to obtain third-order accuracy in smooth regions. The embedded mechanism in the WENO-like schemes guarantees that in regions with discontinuities or large gradients, there is an automatic switch to a one-sided second-order reconstruction, which prevents the creation of spurious oscillations. In the one-dimensional case, our new third-order reconstruction is based on an extremely compact three-point stencil. Analogous compactness is retained in more space dimensions. The accuracy, robustness, and high-resolution properties of our scheme are demonstrated in a variety of one- and two-dimensional problems.

287 citations

Journal ArticleDOI
TL;DR: In this article, a wide angle X-ray analysis (WAXS) was performed on PLA and PCL nanocomposites and the results showed a good dispersion level with both polymeric matrices, whilst the highest thermo-mechanical improvements were reached depending on type of clay.

285 citations

Journal ArticleDOI
TL;DR: In this paper, the performance of a prototype of a high pressure polymer electrolyte membrane water electrolyser was analyzed using the Italian FISR (Research special supplementary funding) project.

285 citations

Journal ArticleDOI
TL;DR: The development of a multimaterial extrusion bioprinting platform is reported that is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs.
Abstract: The development of a multimaterial extrusion bioprinting platform is reported. This platform is capable of depositing multiple coded bioinks in a continuous manner with fast and smooth switching among different reservoirs for rapid fabrication of complex constructs, through digitally controlled extrusion of bioinks from a single printhead consisting of bundled capillaries synergized with programmed movement of the motorized stage.

284 citations

Journal ArticleDOI
TL;DR: In this article, a hierarchical scheme is obtained by extending plates and shells Carrera's Unified Formulation (CUF) to beam structures and an N-order approximation via Mac Laurin's polynomials is assumed on the cross-section for the displacement unknown variables.
Abstract: This paper proposes several axiomatic refined theories for the linear static analysis of beams made of isotropic materials. A hierarchical scheme is obtained by extending plates and shells Carrera's Unified Formulation (CUF) to beam structures. An N-order approximation via Mac Laurin's polynomials is assumed on the cross-section for the displacement unknown variables. N is a free parameter of the formulation. Classical beam theories, such as Euler-Bernoulli's and Timoshenko's, are obtained as particular cases. According to CUF, the governing differential equations and the boundary conditions are derived in terms of a fundamental nucleo that does not depend upon the approximation order. The governing differential equations are solved via the Navier type, closed form solution. Rectangular and I-shaped cross-sections are accounted for. Beams undergo bending and torsional loadings. Several values of the span-to-height ratio are considered. Slender as well as deep beams are analysed. Comparisons with reference solutions and three-dimensional FEM models are given. The numerical investigation has shown that the proposed unified formulation yields the complete three-dimensional displacement and stress fields for each cross-section as long as the appropriate approximation order is considered. The accuracy of the solution depends upon the geometrical parameters of the beam and loading conditions.

283 citations


Authors

Showing all 11854 results

NameH-indexPapersCitations
Rodney S. Ruoff164666194902
Silvia Bordiga10749841413
Sergio Ferrara10572644507
Enrico Rossi10360641255
Stefano Passerini10277139119
James Barber10264242397
Markus J. Buehler9560933054
Dario Farina9483232786
Gabriel G. Katul9150634088
M. De Laurentis8427554727
Giuseppe Caire8282540344
Christophe Fraser7626429250
Erasmo Carrera7582923981
Andrea Califano7530531348
Massimo Inguscio7442721507
Network Information
Related Institutions (5)
Royal Institute of Technology
68.4K papers, 1.9M citations

95% related

Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Karlsruhe Institute of Technology
82.1K papers, 2.1M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023210
2022487
20212,789
20202,969
20192,779
20182,509