scispace - formally typeset
Search or ask a question
Institution

Shandong Normal University

EducationJinan, Shandong, China
About: Shandong Normal University is a education organization based out in Jinan, Shandong, China. It is known for research contribution in the topics: Laser & Catalysis. The organization has 12378 authors who have published 12576 publications receiving 174572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the structural, electrical and optical properties of the ZnO:Ga films with various thickness are studied in detail, and it is observed that with an increase in film thickness, the crystallite sizes of the films are increased.

114 citations

Journal ArticleDOI
TL;DR: Results indicated that T. asperellum Q1 has a real potential to enhance cucumber growth by inducing physiological protection under saline stress, and its siderophores showed sign of alleviating negative effect of salinity and available iron deficiency.
Abstract: Trichoderma spp. are versatile beneficial fungi which can stimulate growth and plant resistance to biotic and abiotic stresses. In this study, the potential of Trichoderma isolate in promoting the cucumber growth under salt stress and its possible mechanisms were investigated. Strain Q1 was isolated from the rhizosphere of cucumber in greenhouse in China and identified as Trichoderma asperellum based on its morphological features and the molecular phylogenetic analyses. It exhibited some plant growth-promoting attributes of phosphate solubilization, 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity, auxin and siderophore production. In pot trials, applying strain Q1 to cucumber plant had significantly promoted seedlings growth and alleviated the growth suppression induced by salt stress as confirmed by the changes in growth phenotype and several biochemical and physiological parameters. In solution culture experiments, the growth of cucumber seedlings was increased and the percentage of wilted cucumber seedlings was decreased in the treatment of siderophore-containing culture filtrate (SCF) of strain Q1 with insoluble Fe(3+) under salt stress. These results indicated that T. asperellum Q1 has a real potential to enhance cucumber growth by inducing physiological protection under saline stress, and its siderophores showed sign of alleviating negative effect of salinity and available iron deficiency.

114 citations

Journal ArticleDOI
TL;DR: The reported dual-spectrum imaging method promises to offer a new strategy for the intracellular imaging and detection of various types of biomolecules.
Abstract: The simultaneous imaging and quantification of multiple intracellular microRNAs (miRNAs) are particularly desirable for the early diagnosis of cancers. However, simultaneous direct imaging with absolute quantification of multiple intracellular RNAs remains a great challenge, particularly for miRNAs, which have significantly different expression levels in living cells. We designed dual-signal switchable (DSS) nanoprobes using the fluorescence-Raman signal switch. The intracellular uptake and dynamic behaviors of the probe are monitored by its fluorescence signal. Meanwhile, real-time quantitative detection of multiple miRNAs is made possible by measurements of the surface-enhanced Raman spectroscopy (SERS) ratios. Moreover, the signal 1:n ratio amplification mode only responds to low-abundance miRNA (asymmetric signal amplification mode) for simultaneous visualization and quantitative detection of significantly different levels of miRNAs in living cells. miR-21 and miR-203 were successfully detected in living MCF-7 cells, in agreement with in vitro results from the same batch of cell lysates. The reported dual-spectrum imaging method promises to offer a new strategy for the intracellular imaging and detection of various types of biomolecules.

114 citations

Journal ArticleDOI
TL;DR: The results obtained revealed that the salt-tolerant genotype M-81E leads to increased sugar content under salt stress by protecting important structures of photosystems, by enhancing the accumulation of photosynthetic products, by increasing the production of sucrose synthetase and by inhibiting sucrose decomposition.
Abstract: Sweet sorghum is an annual C4 crop considered to be one of the most promising bio-energy crops due to its high sugar content in stem, yet it is poorly understood how this plant increases its sugar content in response to salt stress. In response to high NaCl, many of its major processes, such as photosynthesis, protein synthesis, energy and lipid metabolism, are inhibited. Interestingly, sugar content in sweet sorghum stems remains constant or even increases in several salt-tolerant species. In this study, the transcript profiles of two sweet sorghum inbred lines (salt-tolerant M-81E and salt-sensitive Roma) were analyzed in the presence of 0 mM or 150 mM NaCl in order to elucidate the molecular mechanisms that lead to higher sugar content during salt stress. We identified 864 and 930 differentially expressed genes between control plants and those subjected to salt stress in both M-81E and Roma strains. We determined that the majority of these genes are involved in photosynthesis, carbon fixation, and starch and sucrose metabolism. Genes important for maintaining photosystem structure and for regulating electron transport were less affected by salt stress in the M-81E line compared to the salt-sensitive Roma line. In addition, expression of genes encoding NADP+-malate enzyme and sucrose synthetase was up-regulated and expression of genes encoding invertase was down-regulated under salt stress in M-81E. In contrast, the expression of these genes showed the opposite trend in Roma under salt stress. The results we obtained revealed that the salt-tolerant genotype M-81E leads to increased sugar content under salt stress by protecting important structures of photosystems, by enhancing the accumulation of photosynthetic products, by increasing the production of sucrose synthetase and by inhibiting sucrose decomposition.

114 citations

Journal ArticleDOI
TL;DR: This work establishes some sufficient conditions for local stability of nonlinear differential systems with state-dependent delayed impulsive control based onImpulsive control theory and shows the effectiveness of the proposed approach.
Abstract: In this technical note we study the delayed impulsive control of nonlinear differential systems, where the impulsive control involves the delayed state of the system for which the delay is state-dependent. Since the state dependence of the delay makes the impulsive transients dependent on the historical information of the states, which means that it is hard to know exactly a priori how far in the history the information is needed, the main challenge is how to determine the historical states. We resolve this challenge and establish some sufficient conditions for local stability of nonlinear differential systems with state-dependent delayed impulsive control based on impulsive control theory. Two examples are given to show the effectiveness of the proposed approach.

113 citations


Authors

Showing all 12482 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Jinde Cao117143057881
Wei Zhang112118993641
Miao Liu11199359811
Qian Wang108214865557
Jun Yang107209055257
Feng Li10499560692
Feng Chen95213853881
Gang Li9348668181
Jianhong Wu9372636427
Chen-Ho Tung8966230111
Shu Tao8763927304
Bernhard Hommel8547528851
Lingxin Chen8542125147
Bo Tang8370624472
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

92% related

Shandong University
99.1K papers, 1.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Nanjing University
105.5K papers, 2.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202339
2022173
20211,864
20201,710
20191,488
20181,346