scispace - formally typeset
Search or ask a question
Institution

Shandong Normal University

EducationJinan, Shandong, China
About: Shandong Normal University is a education organization based out in Jinan, Shandong, China. It is known for research contribution in the topics: Laser & Catalysis. The organization has 12378 authors who have published 12576 publications receiving 174572 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a general photochemical synthesis route to typical transition metal sulfides as cocatalyst for hydrogen evolution was proposed, where NiS were prepared by a facile and rapid photochemical method.
Abstract: Precise deposition of cocatalysts on the outlet points of photo-generated electrons is helpful for highly efficient photocatalytic hydrogen evolution. Up to now, photochemical preparation of hydrogen production cocatalysts composed of earth-abundant elements is still great challenging and rarely reported. Herein, from the case of NiS/g-C3N4, a general photochemical synthesis route to typical transition metal sulfides as cocatalyst for hydrogen evolution was proposed. NiS were prepared by a facile and rapid photochemical method. The content of deposited NiS can be simply adjusted by the change of irradiation time. The optimized photocatalytic hydrogen evolution rate mounted up to 16 400 μmol g−1 h−1 with 0.76 wt% NiS loading, which is about 2500 times higher than that of pure g-C3N4. The photocatalytic H2 evolution rate was stable after 40 h. The turnover number (TON) reached 1230 000 in 52 h with a turnover frequency (TOF) of 23 600 for NiS. Furthermore, the hydrogen evolution of the NiS/g-C3N4 composite photocatalyst reached 28.3 mmol g−1 during 7 h under natural sunlight. The presence of NiS cocatalyst can efficiently promote the separation of photogenerated electron-hole pairs of g-C3N4, which was supported by the steady-state photoluminescence spectroscopy and photoelectro- chemical analyses.

149 citations

Journal ArticleDOI
TL;DR: It is shown that chaotic synchronization of the networks is heavily dependent on the designed impulsive controllers and these conditions are expressed in terms of LMI and can be easily checked by MATLAB LMI toolbox.

149 citations

Journal ArticleDOI
TL;DR: A simple, rapid, isothermal, and ultrasensitive homogeneous electrochemical DNA biosensing platform for target DNA and protein detection has been developed on the basis of an exonuclease III (Exo III)-aided autocatalytic target recycling strategy.
Abstract: Homogenous electrochemical biosensor has attracted substantial attention owing to its simplicity, rapid response, and improved recognition efficiency compared with heterogeneous biosensor, but the relatively low detection sensitivity and the limited detection analytes prohibit its potential applications To address these issues, herein, a simple, rapid, isothermal, and ultrasensitive homogeneous electrochemical DNA biosensing platform for target DNA and protein detection has been developed on the basis of an exonuclease III (Exo III)-aided autocatalytic target recycling strategy A ferrocene-labeled hairpin probe (HP1) is ingeniously designed, which contains a protruding DNA fragment at 3′-termini as the recognition unit for target DNA Also, the DNA fragment that could be used as secondary target analogue was introduced, but it was caged in the stem region of HP1 In the presence of target DNA, its recognition with the protruding fragment of HP1 triggered the Exo III cleavage process, accompanied with th

149 citations

Journal ArticleDOI
TL;DR: The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.
Abstract: Chenopodium quinoa is a halophytic pseudocereal crop that is being cultivated in an ever-growing number of countries. Because quinoa is highly resistant to multiple abiotic stresses and its seed has a better nutritional value than any other major cereals, it is regarded as a future crop to ensure global food security. We generated a high-quality genome draft using an inbred line of the quinoa cultivar Real. The quinoa genome experienced one recent genome duplication about 4.3 million years ago, likely reflecting the genome fusion of two Chenopodium parents, in addition to the γ paleohexaploidization reported for most eudicots. The genome is highly repetitive (64.5% repeat content) and contains 54 438 protein-coding genes and 192 microRNA genes, with more than 99.3% having orthologous genes from glycophylic species. Stress tolerance in quinoa is associated with the expansion of genes involved in ion and nutrient transport, ABA homeostasis and signaling, and enhanced basal-level ABA responses. Epidermal salt bladder cells exhibit similar characteristics as trichomes, with a significantly higher expression of genes related to energy import and ABA biosynthesis compared with the leaf lamina. The quinoa genome sequence provides insights into its exceptional nutritional value and the evolution of halophytes, enabling the identification of genes involved in salinity tolerance, and providing the basis for molecular breeding in quinoa.

148 citations

Journal ArticleDOI
TL;DR: In this review, the design principles, targeting strategies, therapeutic mechanisms, current challenges and potential future directions of organelle-targeted nanomaterials will be introduced.
Abstract: The ultimate goal of cancer therapy is to eliminate malignant tumors while causing no damage to normal tissues. In the past decades, numerous nanoagents have been employed for cancer treatment because of their unique properties over traditional molecular drugs. However, lack of selectivity and unwanted therapeutic outcomes have severely limited the therapeutic index of traditional nanodrugs. Recently, a series of nanomaterials that can accumulate in specific organelles (nucleus, mitochondrion, endoplasmic reticulum, lysosome, Golgi apparatus) within cancer cells have received increasing interest. These rationally designed nanoagents can either directly destroy the subcellular structures or effectively deliver drugs into the proper targets, which can further activate certain cell death pathways, enabling them to boost the therapeutic efficiency, lower drug dosage, reduce side effects, avoid multidrug resistance, and prevent recurrence. In this Review, the design principles, targeting strategies, therapeutic mechanisms, current challenges, and potential future directions of organelle-targeted nanomaterials will be introduced.

148 citations


Authors

Showing all 12482 results

NameH-indexPapersCitations
Feng Zhang1721278181865
Jinde Cao117143057881
Wei Zhang112118993641
Miao Liu11199359811
Qian Wang108214865557
Jun Yang107209055257
Feng Li10499560692
Feng Chen95213853881
Gang Li9348668181
Jianhong Wu9372636427
Chen-Ho Tung8966230111
Shu Tao8763927304
Bernhard Hommel8547528851
Lingxin Chen8542125147
Bo Tang8370624472
Network Information
Related Institutions (5)
Nankai University
51.8K papers, 1.1M citations

92% related

Shandong University
99.1K papers, 1.6M citations

91% related

Chinese Academy of Sciences
634.8K papers, 14.8M citations

90% related

South China University of Technology
69.4K papers, 1.2M citations

90% related

Nanjing University
105.5K papers, 2.2M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202339
2022173
20211,864
20201,710
20191,488
20181,346