scispace - formally typeset
Search or ask a question
Institution

Shiv Nadar University

EducationDadri, Uttar Pradesh, India
About: Shiv Nadar University is a education organization based out in Dadri, Uttar Pradesh, India. It is known for research contribution in the topics: Population & Graphene. The organization has 1015 authors who have published 1924 publications receiving 18420 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the food-energy-water (FEW) nexus in biorefineries and bio-electrochemical system (BES) and looking into the energy-efficient and value-added product recovery has been discussed.
Abstract: Concerns around acquiring the appropriate resources toward a growing world population have emphasized the significance of crucial connections between food, energy, and water devices, as described within the food-energy-water nexus theory. Advanced biorefineries provide second-generation biofuels and added-value chemicals through food products have affected these nexus sources. We combine various conversion technologies and expected options to look further for cost-effective technologies that maximize the value of resource use and reuse and minimize the amount of resource needed and environmental impacts. In this review article, our central focus is on structure and application, the outline of food-energy-water (FEW) nexus in biorefineries and bio-electrochemical system (BES) and looking into the energy-efficient and value-added product recovery. In addition, based on BES analysis for energy efficiency and valuable product recoveries such as hydrogen evaluation, acetate, recovery of heavy metals, nutrient’s recovery has been discussed under this article. Additionally, we focused on wastewater processing methods, novel electrode materials used in BES, BESs-based desalination and wastewater treatment, recent BES architecture and designs, genetic engineering for enhanced productivity, and valuable materials production surfactants and hydrogen peroxide. Finally, we concluded the topic by discussing the remediation of soil contamination, photosynthetic & microfluidic BES systems, possibilities of employing CO2, including prospects and challenges.

24 citations

Journal ArticleDOI
TL;DR: Interestingly phenotypic screening of this library of bicyclic lactams against the human malaria parasite revealed 7 as a potent antiplasmodial agent.

24 citations

Journal ArticleDOI
TL;DR: In this article, a van der Waals heterostructure (vdW-HS) of monolayer InSe with single-layer $h$-BN was constructed and shown to be thermodynamically and mechanically more robust than individual monolayers.
Abstract: Despite having the fascinating physical, electronic, and optical properties of two-dimensional (2D) crystals of ${\mathrm{MoS}}_{2}$, $h$-BN, and InSe, none of them solely meet all the desired criteria required for high efficiency optoelectronic devices, such as a suitable band gap with very high carrier mobility, a moderate excitonic lifetime, a desirable bending modulus, environmental stability against air and water, etc. Herein, we demonstrate that these fundamental limitations can easily be overcome by building a van der Waals heterostructure (vdW-HS) of monolayer InSe either with single-layer ${\mathrm{MoS}}_{2}$ or $h$-BN. Our first-principles calculations suggest that compared to individual monolayers, the examined $\mathrm{InSe}/{\mathrm{MoS}}_{2}$ and $\mathrm{InSe}/h$-BN vdW-HSs are not only thermodynamically and mechanically more robust but also possess improved electronic and optical properties, which can be particularly useful for solar harvesting devices. Importantly, through a systematic study, we elucidate that the band gap and its nature can largely be modulated ($\ensuremath{\sim}0.1--1.6$ eV, indirect $\ensuremath{\rightleftharpoons}$ direct, type I $\ensuremath{\rightleftharpoons}$ type II) for both the examined heterobilayers by applying mechanical strain and transverse electric field. Even more interestingly, we further show that with such bilayer heterostructures it is possible to get electron and hole mobility almost in the same order of magnitude (${10}^{3}$--${10}^{4}\phantom{\rule{4pt}{0ex}}{\mathrm{cm}}^{2}\phantom{\rule{0.16em}{0ex}}{\mathrm{V}}^{\ensuremath{-}1}\phantom{\rule{0.16em}{0ex}}{\mathrm{s}}^{\ensuremath{-}1}$), either naturally or by applying small biaxial strain.

24 citations

Journal ArticleDOI
TL;DR: A positive correlation of promoter hypermethylation with increased transcript abundance is put forth via identification of DMR-associated genes involved in flower development in cultivated chickpea through analysis of differentially methylated regions.
Abstract: DNA methylation is widely known to regulate gene expression in eukaryotes. Here, we unraveled DNA methylation patterns in cultivated chickpea to understand the regulation of gene expression in different organs. We analyzed the methylation pattern in leaf tissue of wild chickpea too, and compared it with cultivated chickpea. Our analysis indicated abundant CG methylation within gene-body and CHH methylation in intergenic regions of the chickpea genome in all the organs examined. Analysis of differentially methylated regions (DMRs) demonstrated a higher number of CG context DMRs in wild chickpea and CHH context DMRs in cultivated chickpea. We observed increased preponderance of hypermethylated DMRs in the promoter regions and hypomethylated DMRs in the genic regions in cultivated chickpea. Genomic location and context of the DMRs correlated well with expression of proximal genes. Our results put forth a positive correlation of promoter hypermethylation with increased transcript abundance via identification of DMR-associated genes involved in flower development in cultivated chickpea. The atypical correlation observed between promoter hypermethylation and increased transcript abundance might be dependent on 24-nt small RNAs and transcription factors binding to the promoter region. This study provides novel insights into DNA methylation patterns in chickpea and their role in regulation of gene expression.

23 citations

Journal ArticleDOI
TL;DR: Current work illustrates an attractive synthetic approach and the improved antibacterial performance of biobased CS-graft-poly(V-fa) films which may hold as a potential alternative for wound-healing and implant applications in future.

23 citations


Authors

Showing all 1055 results

NameH-indexPapersCitations
Dinesh Mohan7928335775
Vijay Kumar Thakur7437517719
Robert A. Taylor6257215877
Himanshu Pathak5625911203
Gurmit Singh542708565
Vijay Kumar5177310852
Dimitris G. Kaskaoutis431355248
Ken Haenen392886296
Vikas Dudeja391434733
P. K. Giri381584528
Swadesh M Mahajan382555389
Rohini Garg37884388
Rajendra Bhatia361549275
Rakesh Ganguly352404415
Sonal Singhal341804174
Network Information
Related Institutions (5)
Jadavpur University
27.6K papers, 422K citations

90% related

Indian Institute of Technology Delhi
26.9K papers, 503.8K citations

89% related

Indian Institute of Technology Kanpur
28.6K papers, 576.8K citations

88% related

Indian Institute of Technology Roorkee
21.4K papers, 419.9K citations

88% related

Indian Institute of Science
62.4K papers, 1.2M citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20239
202256
2021356
2020322
2019227
2018176