scispace - formally typeset
Search or ask a question
Institution

Swinburne University of Technology

EducationMelbourne, Victoria, Australia
About: Swinburne University of Technology is a education organization based out in Melbourne, Victoria, Australia. It is known for research contribution in the topics: Galaxy & Population. The organization has 7223 authors who have published 25530 publications receiving 667955 citations. The organization is also known as: Swinburne Technical College & Swinburne College of Technology.


Papers
More filters
Journal ArticleDOI
Sinead Kelly1, Sinead Kelly2, Neda Jahanshad2, Andrew Zalesky3  +188 moreInstitutions (55)
TL;DR: The present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide, and is believed to be the first ever large-scale coordinated study of WM microstructural differences in schizophrenia.
Abstract: The regional distribution of white matter (WM) abnormalities in schizophrenia remains poorly understood, and reported disease effects on the brain vary widely between studies. In an effort to identify commonalities across studies, we perform what we believe is the first ever large-scale coordinated study of WM microstructural differences in schizophrenia. Our analysis consisted of 2359 healthy controls and 1963 schizophrenia patients from 29 independent international studies; we harmonized the processing and statistical analyses of diffusion tensor imaging (DTI) data across sites and meta-analyzed effects across studies. Significant reductions in fractional anisotropy (FA) in schizophrenia patients were widespread, and detected in 20 of 25 regions of interest within a WM skeleton representing all major WM fasciculi. Effect sizes varied by region, peaking at (d=0.42) for the entire WM skeleton, driven more by peripheral areas as opposed to the core WM where regions of interest were defined. The anterior corona radiata (d=0.40) and corpus callosum (d=0.39), specifically its body (d=0.39) and genu (d=0.37), showed greatest effects. Significant decreases, to lesser degrees, were observed in almost all regions analyzed. Larger effect sizes were observed for FA than diffusivity measures; significantly higher mean and radial diffusivity was observed for schizophrenia patients compared with controls. No significant effects of age at onset of schizophrenia or medication dosage were detected. As the largest coordinated analysis of WM differences in a psychiatric disorder to date, the present study provides a robust profile of widespread WM abnormalities in schizophrenia patients worldwide. Interactive three-dimensional visualization of the results is available at www.enigma-viewer.org.

480 citations

Journal ArticleDOI
25 Sep 2015-Science
TL;DR: It is concluded that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.
Abstract: Gravitational waves are expected to be radiated by supermassive black hole binaries formed during galaxy mergers. A stochastic superposition of gravitational waves from all such binary systems would modulate the arrival times of pulses from radio pulsars. Using observations of millisecond pulsars obtained with the Parkes radio telescope, we constrained the characteristic amplitude of this background, A(c,yr), to be <1.0 × 10(-15) with 95% confidence. This limit excludes predicted ranges for A(c,yr) from current models with 91 to 99.7% probability. We conclude that binary evolution is either stalled or dramatically accelerated by galactic-center environments and that higher-cadence and shorter-wavelength observations would be more sensitive to gravitational waves.

478 citations

Journal ArticleDOI
13 Sep 2012-Nature
TL;DR: Topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling—by heat transfer—the liquid–gas phase transition at hot surfaces, and can potentially be applied to control other phase transitions.
Abstract: Textured superhydrophobic surfaces—well known for their water-repelling properties—can be used to control the boiling state of a liquid in contact with a hot surface, suppressing the unwanted nucleation of bubbles. Textured superhydrophobic surfaces are well known and suitably named for their water-repelling properties. Ivan Vakarelski et al. show here that such surfaces can be used to control a very different property — the boiling state of a liquid in contact with a hot surface. They find that the hot surface can be engineered such that the system remains in the 'Leidenfrost' regime, whereby boiling takes place only in a continuous vapour film at the hot surface, rather than going through the familiar 'nucleate boiling' bubbling phase. The complete suppression of nucleate boiling could be advantageous in industrial situations in which vapour explosions are best avoided — in nuclear power plants, for instance. Textured, water-repelling surfaces might also be used to control or prevent other phase transitions, such as ice or frost formation. In 1756, Leidenfrost1 observed that water drops skittered on a sufficiently hot skillet, owing to levitation by an evaporative vapour film. Such films are stable only when the hot surface is above a critical temperature, and are a central phenomenon in boiling2. In this so-called Leidenfrost regime, the low thermal conductivity of the vapour layer inhibits heat transfer between the hot surface and the liquid. When the temperature of the cooling surface drops below the critical temperature, the vapour film collapses and the system enters a nucleate-boiling regime, which can result in vapour explosions that are particularly detrimental in certain contexts, such as in nuclear power plants3. The presence of these vapour films can also reduce liquid–solid drag4,5,6. Here we show how vapour film collapse can be completely suppressed at textured superhydrophobic surfaces. At a smooth hydrophobic surface, the vapour film still collapses on cooling, albeit at a reduced critical temperature, and the system switches explosively to nucleate boiling. In contrast, at textured, superhydrophobic surfaces, the vapour layer gradually relaxes until the surface is completely cooled, without exhibiting a nucleate-boiling phase. This result demonstrates that topological texture on superhydrophobic materials is critical in stabilizing the vapour layer and thus in controlling—by heat transfer—the liquid–gas phase transition at hot surfaces. This concept can potentially be applied to control other phase transitions, such as ice or frost formation7,8,9, and to the design of low-drag surfaces at which the vapour phase is stabilized in the grooves of textures without heating10.

469 citations

Journal ArticleDOI
TL;DR: The WiggleZ Dark Energy Survey as discussed by the authors is a survey of 240 000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9m Anglo-Australian Telescope (AAT).
Abstract: The WiggleZ Dark Energy Survey is a survey of 240 000 emission-line galaxies in the distant Universe, measured with the AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope (AAT). The primary aim of the survey is to precisely measure the scale of baryon acoustic oscillations (BAO) imprinted on the spatial distribution of these galaxies at look-back times of 4–8 Gyr. The target galaxies are selected using ultraviolet (UV) photometry from the Galaxy Evolution Explorer satellite, with a flux limit of NUV < 22.8 mag . We also require that the targets are detected at optical wavelengths, specifically in the range 20.0 < r < 22.5 mag . We use the Lyman break method applied to the UV colours, with additional optical colour limits, to select high-redshift galaxies. The galaxies generally have strong emission lines, permitting reliable redshift measurements in relatively short exposure times on the AAT. The median redshift of the galaxies is z_(med)= 0.6 . The redshift range containing 90 per cent of the galaxies is 0.2 < z < 1.0 . The survey will sample a volume of ~1 Gpc^3 over a projected area on the sky of 1000 deg^2, with an average target density of 350 deg^(−2). Detailed forecasts indicate that the survey will measure the BAO scale to better than 2 per cent and the tangential and radial acoustic wave scales to approximately 3 and 5 per cent, respectively. Combining the WiggleZ constraints with existing cosmic microwave background measurements and the latest supernova data, the marginalized uncertainties in the cosmological model are expected to be σ(Ω_m) = 0.02 and σ(w) = 0.07 (for a constant w model). The WiggleZ measurement of w will constitute a robust, precise and independent test of dark energy models. This paper provides a detailed description of the survey and its design, as well as the spectroscopic observations, data reduction and redshift measurement techniques employed. It also presents an analysis of the properties of the target galaxies, including emission-line diagnostics which show that they are mostly extreme starburst galaxies, and Hubble Space Telescope images, which show that they contain a high fraction of interacting or distorted systems. In conjunction with this paper, we make a public data release of data for the first 100 000 galaxies measured for the project.

469 citations


Authors

Showing all 7390 results

NameH-indexPapersCitations
Ramachandran S. Vasan1721100138108
Karl Glazebrook13261380150
Neville Owen12770074166
Michael A. Kamm12463753606
Zidong Wang12291450717
Christos Pantelis12072356374
Warrick J. Couch10941063088
Gao Qing Lu10854653914
Paul Mulvaney10639745952
Alexa S. Beiser10636647457
A. Roodman105108750599
Chris Power10447745321
Murray D. Esler10446941929
David Coward10340067118
Hung T. Nguyen102101147693
Network Information
Related Institutions (5)
University of New South Wales
153.6K papers, 4.8M citations

93% related

University of Sydney
187.3K papers, 6.1M citations

92% related

Australian National University
109.2K papers, 4.3M citations

91% related

University of Queensland
155.7K papers, 5.7M citations

91% related

University of Melbourne
174.8K papers, 6.3M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022373
20212,523
20202,470
20192,298
20181,978