scispace - formally typeset
Search or ask a question
Institution

Universiti Teknologi Petronas

EducationIpoh, Malaysia
About: Universiti Teknologi Petronas is a education organization based out in Ipoh, Malaysia. It is known for research contribution in the topics: Adsorption & Ionic liquid. The organization has 6127 authors who have published 11284 publications receiving 119400 citations.
Topics: Adsorption, Ionic liquid, Catalysis, Membrane, Biomass


Papers
More filters
Proceedings ArticleDOI
01 Sep 2017
TL;DR: A potential method for tuberculosis detection using deep-learning which classifies CXR images into two categories, that is, normal and abnormal, which is presented in this paper.
Abstract: Tuberculosis (TB) is a major health threat in the developing countries. Many patients die every year due to lack of treatment and error in diagnosis. Developing a computer-aided diagnosis (CAD) system for TB detection can help in early diagnosis and containing the disease. Most of the current CAD systems use handcrafted features, however, lately there is a shift towards deep-learning-based automatic feature extractors. In this paper, we present a potential method for tuberculosis detection using deep-learning which classifies CXR images into two categories, that is, normal and abnormal. We have used CNN architecture with 7 convolutional layers and 3 fully connected layers. The performance of three different optimizers has been compared. Out of these, Adam optimizer with an overall accuracy of 94.73% and validation accuracy of 82.09% performed best amongst them. All the results are obtained using Montgomery and Shenzhen datasets which are available in public domain.

65 citations

Journal ArticleDOI
TL;DR: The preliminary finding shows that toxic release consequences analysis tool (TORCAT) has capability to eliminate or minimize the potential toxic release accidents by adopting the inherent safety principle early in preliminary design stage.

65 citations

Journal ArticleDOI
01 Dec 2020
TL;DR: In this article, the biochar derived from the rice husk, wheat straw, and corncob has been used for the adsorptive removal of heavy metals, including the lead (Pb+2) and cadmium (Cd+2).
Abstract: Cleaner and sustainable water production lead to the development of environmentally friendly adsorbent materials for energy-efficient, cost-effective, and cleaner water production. In this study, the biochar derived from the rice husk, wheat straw, and corncob has been used for the adsorptive removal of heavy metals, including the lead (Pb+2) and cadmium (Cd+2). The synthesised biochar was characterised by a different structural and analytical approach. The characterisation of biochar revealed the existence of the combined redox, i.e. reductive and oxidative surface functional groups along with some inert functional groups which play a significant role in donating or accepting an electron to degrade the pollutants in the wastewater. The biochar synthesised in this study was found to be amorphous, and some negligible disorders and defects have been observed in the structure of biochar. The biochar has been highly stable under harsh thermal conditions by sustaining significant weight over a temperature of 700 ​°C and also be hygroscopic. The biochar rice husk, wheat straw, and corncob demonstrated the lead (Pb+2) adsorption capacity of 96.41%, 95.38%, and 96.92%, while for cadmium (Cd+2), the uptake capacity was found to be 94.73%, 93.68%, and 95.78%. The reported biochar is a cleaner, environmentally friendly, economical, and sustainable alternative to conventional adsorbent materials.

65 citations

Journal ArticleDOI
TL;DR: In this paper, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid.
Abstract: Free fatty acids content plays an important role in selecting the appropriate route for biodiesel production. Oils with high content of free fatty acids can be treated by acid esterification where an alcohol reacts with the given oil in the presence of acid catalyst. In the current study, an equivolume blend of crude rubber seed oil and crude palm oil is fed to the reaction with methanol as the alcohol of choice and sulfuric acid. Selected reaction parameters were optimized, using Taguchi method for design of experiments, to yield the lowest free fatty acid content in the final product. The investigated parameters include alcohol to oil ratio, temperature and amount of catalyst. The effect and significance of each parameter were then studied based on the fractional factorial design and verified by additional experiments. The optimum conditions for acid esterification which could reduce the free fatty acid content in the feedstock to lower than 0.6% (95% reduction) were 65 °C, 15:1 methanol to oil ratio (by mole) and 0.5 wt% H 2 SO 4 after 3 h of reaction time. Temperature had been found to have the most effect on the reduction of free fatty acids followed by reactants ratio while increasing catalyst amount had nominal effect.

65 citations

Journal ArticleDOI
TL;DR: In this paper, a newly emerged Accelerated Particle Swarm Optimization (APSO) technique was applied and compared with standard particle swarm optimization (PSO) considering charging time and battery capacity.
Abstract: Transportation electrification has undergone major changes since the last decade. Success of smart grid with renewable energy integration solely depends upon the large-scale penetration of plug-in hybrid electric vehicles (PHEVs) for a sustainable and carbon-free transportation sector. One of the key performance indicators in hybrid electric vehicle is the State-of-Charge (SoC) which needs to be optimized for the betterment of charging infrastructure using stochastic computational methods. In this paper, a newly emerged Accelerated particle swarm optimization (APSO) technique was applied and compared with standard particle swarm optimization (PSO) considering charging time and battery capacity. Simulation results obtained for maximizing the highly nonlinear objective function indicate that APSO achieves some improvements in terms of best fitness and computation time.

65 citations


Authors

Showing all 6203 results

NameH-indexPapersCitations
Muhammad Imran94305351728
Muhammad Shahbaz92100134170
Muhammad Farooq92134137533
Markus P. Schlaich7447225674
Abdul Basit7457020078
Keat Teong Lee7127616745
Abdul Latif Ahmad6849022012
Cor J. Peters522629472
Suzana Yusup524378997
Muhammad Nadeem524099649
Umer Rashid5138110081
Hamidi Abdul Aziz493459083
Serge Palacin452018376
Muhammad Awais432726704
Zakaria Man432455301
Network Information
Related Institutions (5)
Universiti Teknologi Malaysia
39.5K papers, 520.6K citations

95% related

Universiti Putra Malaysia
36.7K papers, 647.6K citations

89% related

King Fahd University of Petroleum and Minerals
24K papers, 443.8K citations

89% related

Universiti Sains Malaysia
39.3K papers, 655.4K citations

88% related

National University of Malaysia
41.2K papers, 552.6K citations

88% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202338
2022128
20211,303
20201,316
2019978
20181,029