scispace - formally typeset
Search or ask a question
Institution

University of Alabama at Birmingham

EducationBirmingham, Alabama, United States
About: University of Alabama at Birmingham is a education organization based out in Birmingham, Alabama, United States. It is known for research contribution in the topics: Population & Medicine. The organization has 38523 authors who have published 86775 publications receiving 3930642 citations. The organization is also known as: UAB & The University of Alabama at Birmingham.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors summarize salient developments in research on aging and vision over the past 25 years, focusing on spatial contrast sensitivity, vision under low luminance, temporal sensitivity and motion perception, and visual processing speed.

545 citations

Journal ArticleDOI
16 Jul 2009-Nature
TL;DR: It is shown that Batf is required for the differentiation of IL17-producing T helper (TH17) cells, and it is demonstrated that the AP-1 protein BATF has a critical role in TH17 differentiation.
Abstract: AP-1 (activator protein-1) transcription factors, also known as JUN factors, are broadly acting factors regulating many inducible genetic responses. Schraml et al. report a surprising mechanism that expands the biological repertoire of the AP-1 family. They find that the AP-1 transcription factor Batf plays a critical role in the differentiation of IL17-producing T-helper cells. TH17 cells comprise a subset of CD4+ T cells that coordinate the inflammatory response in host defence but are pathogenic in autoimmunity. Here, the AP-1 transcription factor BATF is shown to have a critical role in TH17 cell differentiation, with Batf−/− mice displaying a defect in TH17 differentiation and resistance to experimental autoimmune encephalomyelitis. Activator protein 1 (AP-1, also known as JUN) transcription factors are dimers of JUN, FOS, MAF and activating transcription factor (ATF) family proteins characterized by basic region and leucine zipper domains1. Many AP-1 proteins contain defined transcriptional activation domains, but BATF and the closely related BATF3 (refs 2, 3) contain only a basic region and leucine zipper, and are considered to be inhibitors of AP-1 activity3,4,5,6,7,8. Here we show that Batf is required for the differentiation of IL17-producing T helper (TH17) cells9. TH17 cells comprise a CD4+ T-cell subset that coordinates inflammatory responses in host defence but is pathogenic in autoimmunity10,11,12,13. Batf-/- mice have normal TH1 and TH2 differentiation, but show a defect in TH17 differentiation, and are resistant to experimental autoimmune encephalomyelitis. Batf-/- T cells fail to induce known factors required for TH17 differentiation, such as RORγt11 (encoded by Rorc) and the cytokine IL21 (refs 14–17). Neither the addition of IL21 nor the overexpression of RORγt fully restores IL17 production in Batf-/- T cells. The Il17 promoter is BATF-responsive, and after TH17 differentiation, BATF binds conserved intergenic elements in the Il17a–Il17f locus and to the Il17, Il21 and Il22 (ref. 18) promoters. These results demonstrate that the AP-1 protein BATF has a critical role in TH17 differentiation.

545 citations

Journal ArticleDOI
TL;DR: This review focuses on the role of the microglia in multiple sclerosis, a chronic inflammatory demyelinating disease of the central nervous system, and in the animal model of MS, experimental allergic encephalomyelitis (EAE).
Abstract: One of the characteristic features of microglia is their rapid activation in response to injury, inflammation, neurodegeneration, infection, and brain tumors. This review focuses on the role of the microglia in multiple sclerosis (MS), a chronic inflammatory demyelinating disease of the central nervous system (CNS), and in the animal model of MS, experimental allergic encephalomyelitis (EAE). Microglial activation in MS and EAE is thought to contribute directly to CNS damage through several mechanisms, including production of proinflammatory cytokines, matrix metalloproteinases, and free radicals. In addition, activated microglia serve as the major antigen-presenting cell in the CNS, likely contributing to aberrant immune reactivity at this site. A mechanistic understanding of the way in which microglia are activated and ultimately inhibited is crucial for the formulation of therapeutic modalities to treat MS and other CNS autoimmune diseases.

544 citations

Journal ArticleDOI
31 Jan 2008-Nature
TL;DR: This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling.
Abstract: The RIG-like helicase (RLH) family of intracellular receptors detect viral nucleic acid and signal through the mitochondrial antiviral signalling adaptor MAVS (also known as Cardif, VISA and IPS-1) during a viral infection. MAVS activation leads to the rapid production of antiviral cytokines, including type 1 interferons. Although MAVS is vital to antiviral immunity, its regulation from within the mitochondria remains unknown. Here we describe human NLRX1, a highly conserved nucleotide-binding domain (NBD)- and leucine-rich-repeat (LRR)-containing family member (known as NLR) that localizes to the mitochondrial outer membrane and interacts with MAVS. Expression of NLRX1 results in the potent inhibition of RLH- and MAVS-mediated interferon-beta promoter activity and in the disruption of virus-induced RLH-MAVS interactions. Depletion of NLRX1 with small interference RNA promotes virus-induced type I interferon production and decreases viral replication. This work identifies NLRX1 as a check against mitochondrial antiviral responses and represents an intersection of three ancient cellular processes: NLR signalling, intracellular virus detection and the use of mitochondria as a platform for anti-pathogen signalling. This represents a conceptual advance, in that NLRX1 is a modulator of pathogen-associated molecular pattern receptors rather than a receptor, and identifies a key therapeutic target for enhancing antiviral responses.

544 citations


Authors

Showing all 38940 results

NameH-indexPapersCitations
Rudolf Jaenisch206606178436
Joel Schwartz1831149109985
Tadamitsu Kishimoto1811067130860
Jasvinder A. Singh1762382223370
Gregg L. Semenza168502130316
David R. Jacobs1651262113892
Hua Zhang1631503116769
David R. Holmes1611624114187
David Cella1561258106402
Elaine S. Jaffe156828112412
Michael A. Matthay15199898687
Lawrence Corey14677378105
Barton F. Haynes14491179014
Douglas D. Richman14263382806
Kjell Fuxe142147989846
Network Information
Related Institutions (5)
University of Pittsburgh
201K papers, 9.6M citations

98% related

University of California, San Francisco
186.2K papers, 12M citations

98% related

National Institutes of Health
297.8K papers, 21.3M citations

97% related

Brigham and Women's Hospital
110.5K papers, 6.8M citations

97% related

University of North Carolina at Chapel Hill
185.3K papers, 9.9M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023168
2022530
20215,327
20205,028
20194,402
20184,083