scispace - formally typeset
Search or ask a question

Showing papers by "University of Macau published in 2020"


Journal ArticleDOI
Theo Vos1, Theo Vos2, Theo Vos3, Stephen S Lim  +2416 moreInstitutions (246)
TL;DR: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates, and there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries.

5,802 citations


Journal ArticleDOI
TL;DR: The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure.

3,059 citations


Journal ArticleDOI
TL;DR: The 2019 novel coronavirus (2019-nCoV) pneumonia, believed to have originated in a wet market in Wuhan, Hubei province, China at the end of 2019, has gained intense attention nationwide and globally and a range of measures has been urgently adopted.

2,447 citations



Journal ArticleDOI
TL;DR: Experts have reached a consensus on the admission of patients with severe mental illness during the CO VID-19 outbreak in mental health institutions, and the rapid transmission of the COVID-19 has emerged to mount a serious challenge to the mental health service in China.
Abstract: The novel coronavirus disease (COVID-19) has been rapidly transmitted in China, Macau, Hong Kong, and other Asian and European counterparts. This COVID-19 epidemic has aroused increasing attention nationwide. Patients, health professionals, and the general public are under insurmountable psychological pressure which may lead to various psychological problems, such as anxiety, fear, depression, and insomnia. Psychological crisis intervention plays a pivotal role in the overall deployment of the disease control. The National Health Commission of China has summoned a call for emergency psychological crisis intervention and thus, various mental health associations and organizations have established expert teams to compile guidelines and public health educational articles/videos for mental health professionals and the general public alongside with online mental health services. In addition, mental health professionals and expert groups are stationed in designated isolation hospitals to provide on-site services. Experts have reached a consensus on the admission of patients with severe mental illness during the COVID-19 outbreak in mental health institutions. Nevertheless, the rapid transmission of the COVID-19 has emerged to mount a serious challenge to the mental health service in China.

771 citations


Journal ArticleDOI
Jun Zheng1
TL;DR: The key events occurred during the early stage of SARS-CoV-2 outbreak are summarized, the basic characteristics of the pathogen, the signs and symptoms of the infected patients as well as the possible transmission pathways of the virus are reviewed.
Abstract: An ongoing outbreak of pneumonia caused by a novel coronavirus, currently designated as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), was reported recently. However, as SARS-CoV-2 is an emerging virus, we know little about it. In this review, we summarize the key events occurred during the early stage of SARS-CoV-2 outbreak, the basic characteristics of the pathogen, the signs and symptoms of the infected patients as well as the possible transmission pathways of the virus. Furthermore, we also review the current knowledge on the origin and evolution of the SARS-CoV-2. We highlight bats as the potential natural reservoir and pangolins as the possible intermediate host of the virus, but their roles are waiting for further investigation. Finally, the advances in the development of chemotherapeutic options are also briefly summarized.

770 citations


Journal ArticleDOI
TL;DR: The intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.
Abstract: A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.

765 citations


Journal ArticleDOI
Yang Yang1, Shahidul Islam1, Jin Wang1, Yuan Li1, Xin Chen1 
TL;DR: Clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed and experiment studies that provide an insight into the mechanism underlying the therapeutic effect ofTCM are introduced.
Abstract: Currently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2, formerly known as 2019-nCoV, the causative pathogen of Coronavirus Disease 2019 (COVID-19)) has rapidly spread across China and around the world, causing an outbreak of acute infectious pneumonia. No specific anti-virus drugs or vaccines are available for the treatment of this sudden and lethal disease. The supportive care and non-specific treatment to ameliorate the symptoms of the patient are the only options currently. At the top of these conventional therapies, greater than 85% of SARS-CoV-2 infected patients in China are receiving Traditional Chinese Medicine (TCM) treatment. In this article, relevant published literatures are thoroughly reviewed and current applications of TCM in the treatment of COVID-19 patients are analyzed. Due to the homology in epidemiology, genomics, and pathogenesis of the SARS-CoV-2 and SARS-CoV, and the widely use of TCM in the treatment of SARS-CoV, the clinical evidence showing the beneficial effect of TCM in the treatment of patients with SARS coronaviral infections are discussed. Current experiment studies that provide an insight into the mechanism underlying the therapeutic effect of TCM, and those studies identified novel naturally occurring compounds with anti-coronaviral activity are also introduced.

638 citations


Journal ArticleDOI
Ye Yi1, Philip N.P. Lagniton1, Sen Ye1, Enqin Li1, Ren-He Xu1 
TL;DR: This article attempts to provide a timely and comprehensive review of the swiftly developing research subject and will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease.
Abstract: The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women. In response to the rapidly increasing number of publications on the emerging disease, this article attempts to provide a timely and comprehensive review of the swiftly developing research subject. We will cover the basics about the epidemiology, etiology, virology, diagnosis, treatment, prognosis, and prevention of the disease. Although many questions still require answers, we hope that this review helps in the understanding and eradication of the threatening disease.

609 citations



Journal ArticleDOI
TL;DR: Examining leukocyte and cytokine activity in COVID‐19 focuses on how these levels are altered as the disease progresses and proposed consequences to organ pathology and Viral and host interactions are described to gain further insight into leukocytes biology and how dysregulated cytokine responses lead to disease and/or organ damage.
Abstract: Clinical evidence indicates that the fatal outcome observed with severe acute respiratory syndrome-coronavirus-2 infection often results from alveolar injury that impedes airway capacity and multi-organ failure-both of which are associated with the hyperproduction of cytokines, also known as a cytokine storm or cytokine release syndrome. Clinical reports show that both mild and severe forms of disease result in changes in circulating leukocyte subsets and cytokine secretion, particularly IL-6, IL-1s, IL-10, TNF, GM-CSF, IP-10 (IFN-induced protein 10), IL-17, MCP-3, and IL-1ra. Not surprising, therapies that target the immune response and curtail the cytokine storm in coronavirus 2019 (COVID-19) patients have become a focus of recent clinical trials. Here we review reports on leukocyte and cytokine data associated with COVID-19 disease in 3939 patients in China and describe emerging data on immunopathology. With an emphasis on immune modulation, we also look at ongoing clinical studies aimed at blocking proinflammatory cytokines; transfer of immunosuppressive mesenchymal stem cells; use of convalescent plasma transfusion; as well as immunoregulatory therapy and traditional Chinese medicine regimes. In examining leukocyte and cytokine activity in COVID-19, we focus in particular on how these levels are altered as the disease progresses (neutrophil NETosis, macrophage, T cell response, etc.) and proposed consequences to organ pathology (coagulopathy, etc.). Viral and host interactions are described to gain further insight into leukocyte biology and how dysregulated cytokine responses lead to disease and/or organ damage. By better understanding the mechanisms that drive the intensity of a cytokine storm, we can tailor treatment strategies at specific disease stages and improve our response to this worldwide public health threat.

Journal ArticleDOI
TL;DR: Residents' perceptions of the risks posed by tourism activity are described, and their willingness to pay to reduce public health risks based on hypothetical scenarios are estimated using the triple-bounded dichotomous choice contingent valuation method.

Journal ArticleDOI
TL;DR: This mini-review will focus on the importance of the endocytic pathway as well as the autophagy process in viral infection of several pathogenic CoVs inclusive of SARS- coV, MERS-CoV and the new CoV named as severe acute respiratory syndrome coronavirus 2 (SARS- CoV-2), and discuss the development of therapeutic agents by targeting these processes.
Abstract: Coronaviruses (CoVs) are a group of enveloped, single-stranded positive genomic RNA viruses and some of them are known to cause severe respiratory diseases in human, including Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory Syndrome (MERS) and the ongoing coronavirus disease-19 (COVID-19). One key element in viral infection is the process of viral entry into the host cells. In the last two decades, there is increasing understanding on the importance of the endocytic pathway and the autophagy process in viral entry and replication. As a result, the endocytic pathway including endosome and lysosome has become important targets for development of therapeutic strategies in combating diseases caused by CoVs. In this mini-review, we will focus on the importance of the endocytic pathway as well as the autophagy process in viral infection of several pathogenic CoVs inclusive of SARS-CoV, MERS-CoV and the new CoV named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and discuss the development of therapeutic agents by targeting these processes. Such knowledge will provide important clues for control of the ongoing epidemic of SARS-CoV-2 infection and treatment of COVID-19.

Journal ArticleDOI
TL;DR: In this article, the authors present a critical combined energy analysis of demand in developed/developing countries, including the load requirements of the various business sectors, including renewable energy (e.g., wind, solar, geothermal, tidal, etc.) as well as global carbon dioxide emissions.

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate a hydrothermal approach to deposit high-quality Sb2(S,Se)3 films and demonstrate that increasing the Se/S ratio leads to a favorable orientation of the (Sb4S(e)6)n ribbons.
Abstract: Antimony selenosulfide, Sb2(S,Se)3, has attracted attention over the last few years as a light-harvesting material for photovoltaic technology owing to its phase stability, earth abundancy and low toxicity. However, the lack of a suitable material processing approach to obtain Sb2(S,Se)3 films with optimal optoelectronic properties and morphology severely hampers prospects for efficiency improvement. Here we demonstrate a hydrothermal approach to deposit high-quality Sb2(S,Se)3 films. By varying the Se/S ratio and the temperature of the post-deposition annealing, we improve the film morphology, increase the grain size and reduce the number of defects. In particular, we find that increasing the Se/S ratio leads to a favourable orientation of the (Sb4S(e)6)n ribbons (S(e) represents S or Se). By optmizing the hydrothermal deposition parameters and subsequent annealing, we report a Sb2(S,Se)3 cell with a certified 10.0% efficiency. This result highlights the potential of Sb2(S,Se)3 as an emerging photovoltaic material. Antimony chalcogenides are emerging photovoltaic materials, yet difficulties in fabricating high-quality films limit device performance. We show that hydrothermal synthesis affords good morphology and reduced defects in antimony selenosulfide films, enabling solar cells with an efficiency of 10%.

Journal ArticleDOI
TL;DR: A novel neuro-fuzzy model named fuzzy broad learning system (BLS) is proposed by merging the Takagi–Sugeno (TS) fuzzy system into BLS, and the results indicate that fuzzy BLS outperforms other models involved.
Abstract: A novel neuro-fuzzy model named fuzzy broad learning system (BLS) is proposed by merging the Takagi–Sugeno (TS) fuzzy system into BLS. The fuzzy BLS replaces the feature nodes of BLS with a group of TS fuzzy subsystems, and the input data are processed by each of them. Instead of aggregating the outputs of fuzzy rules produced by every fuzzy subsystem into one value immediately, all of them are sent to the enhancement layer for further nonlinear transformation to preserve the characteristic of inputs. The defuzzification outputs of all fuzzy subsystem and the outputs of enhancement layer are combined together to obtain the model output. The ${k}$ -means method is employed to determine the centers of Gaussian membership functions in antecedent part and the number of fuzzy rules. The parameters that need to be calculated in a fuzzy BLS are the weights connecting the outputs of enhancement layer to model output and the randomly initialized coefficients of polynomials in consequent part in fuzzy subsystems, which can be calculated analytically. Therefore, fuzzy BLS retains the fast computational nature of BLS. The proposed fuzzy BLS is evaluated by some popular benchmarks for regression and classification, and compared with some state-of-the-art nonfuzzy and neuro-fuzzy approaches. The results indicate that fuzzy BLS outperforms other models involved. Moreover, fuzzy BLS shows advantages over neuro-fuzzy models regarding to the number of fuzzy rules and training time, which can ease the problem of rule explosion to some extent.


Journal ArticleDOI
TL;DR: Major challenges for patients with psychiatric disorders and mental health professionals during the COVID-19 outbreak are outlined, and how to manage these challenges through further mental health service reform in China is discussed.
Abstract: Recently, more than 300 Chinese patients with psychiatric disorders were diagnosed with the 2019 novel coronavirus disease (COVID-19). Possible reasons quoted in the report were the lack of caution regarding the COVID-19 outbreak in January and insufficient supplies of protective gear. We outlined major challenges for patients with psychiatric disorders and mental health professionals during the COVID-19 outbreak, and also discussed how to manage these challenges through further mental health service reform in China.

Journal ArticleDOI
TL;DR: Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials.
Abstract: Nanotechnology is a key advanced technology enabling contribution, development, and sustainable impact on food, medicine, and agriculture sectors. Nanomaterials have potential to lead qualitative and quantitative production of healthier, safer, and high-quality functional foods which are perishable or semi-perishable in nature. Nanotechnologies are superior than conventional food processing technologies with increased shelf life of food products, preventing contamination, and production of enhanced food quality. This comprehensive review on nanotechnologies for functional food development describes the current trends and future perspectives of advanced nanomaterials in food sector considering processing, packaging, security, and storage. Applications of nanotechnologies enhance the food bioavailability, taste, texture, and consistency, achieved through modification of particle size, possible cluster formation, and surface charge of food nanomaterials. In addition, the nanodelivery-mediated nutraceuticals, synergistic action of nanomaterials in food protection, and the application of nanosensors in smart food packaging for monitoring the quality of the stored foods and the common methods employed for assessing the impact of nanomaterials in biological systems are also discussed.


Journal ArticleDOI
TL;DR: How AI assists cancer diagnosis and prognosis is explored, specifically with regard to its unprecedented accuracy, which is even higher than that of general statistical applications in oncology.

Journal ArticleDOI
TL;DR: Although many challenges exist, NAbs still offer a therapeutic option to control the current pandemic and the possible re-emergence of the virus in the future, and their development therefore remains a high priority.
Abstract: A newly identified novel coronavirus (SARS-CoV-2) is causing pneumonia-associated respiratory syndrome across the world. Epidemiology, genomics, and pathogenesis of the SARS-CoV-2 show high homology with that of SARS-CoV. Current efforts are focusing on development of specific antiviral drugs. Therapeutic neutralizing antibodies (NAbs) against SARS-CoV-2 will be greatly important therapeutic agents for the treatment of coronavirus disease 2019 (COVID-19). Herein, the host immune responses against SARS-CoV discussed in this review provide implications for developing NAbs and understanding clinical interventions against SARS-CoV-2. Further, we describe the benefits, challenges and considerations of NAbs against SARS-CoV-2. Although many challenges exist, NAbs still offer a therapeutic option to control the current pandemic and the possible re-emergence of the virus in the future, and their development therefore remains a high priority.

Journal ArticleDOI
TL;DR: Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live- cell approach.
Abstract: Vascular disease remains the leading cause of death and disability, the etiology of which often involves atherosclerosis. The current treatment of atherosclerosis by pharmacotherapy has limited therapeutic efficacy. Here we report a biomimetic drug delivery system derived from macrophage membrane coated ROS-responsive nanoparticles (NPs). The macrophage membrane not only avoids the clearance of NPs from the reticuloendothelial system, but also leads NPs to the inflammatory tissues, where the ROS-responsiveness of NPs enables specific payload release. Moreover, the macrophage membrane sequesters proinflammatory cytokines to suppress local inflammation. The synergistic effects of pharmacotherapy and inflammatory cytokines sequestration from such a biomimetic drug delivery system lead to improved therapeutic efficacy in atherosclerosis. Comparison to macrophage internalized with ROS-responsive NPs, as a live-cell based drug delivery system for treatment of atherosclerosis, suggests that cell membrane coated drug delivery approach is likely more suitable for dealing with an inflammatory disease than the live-cell approach.

Journal ArticleDOI
TL;DR: A critical and systematic review of renewable energy and electricity prediction models applied as an energy planning tool and three major states-of-art forecasting classifications: machine learning algorithms; ensemble-based approaches; iii) and artificial neural networks are analyzed.

Journal ArticleDOI
TL;DR: A facile method to regenerate NaBH4 with high yield and low costs, which avoids expensive reducing agent such as MgH2, bypasses the energy-intensive dehydration procedure to remove water from Na2B4O7·10H2O, and does not require high-pressure H2 gas, therefore leading to much reduced costs.
Abstract: Sodium borohydride (NaBH4 ) is among the most studied hydrogen storage materials because it is able to deliver high-purity H2 at room temperature with controllable kinetics via hydrolysis; however, its regeneration from the hydrolytic product has been challenging. Now, a facile method is reported to regenerate NaBH4 with high yield and low costs. The hydrolytic product NaBO2 in aqueous solution reacts with CO2 , forming Na2 B4 O7 ⋅10 H2 O and Na2 CO3 , both of which are ball-milled with Mg under ambient conditions to form NaBH4 in high yield (close to 80 %). Compared with previous studies, this approach avoids expensive reducing agents such as MgH2 , bypasses the energy-intensive dehydration procedure to remove water from Na2 B4 O7 ⋅10 H2 O, and does not require high-pressure H2 gas, therefore leading to much reduced costs. This method is expected to effectively close the loop of NaBH4 regeneration and hydrolysis, enabling a wide deployment of NaBH4 for hydrogen storage.

Journal ArticleDOI
TL;DR: This paper’s application survey of 5G on DR is carried out before 5G technology enters the large-scale commercial stage, so as to provide references and guidelines for developing future 5G networks in the smart grid paradigm.

Journal ArticleDOI
TL;DR: In this article, a single-atom site (SA) catalysts on N-doped carbon (CN) materials exhibit prominent performance for their active sites being M-Nx.
Abstract: Single-atom site (SA) catalysts on N-doped carbon (CN) materials exhibit prominent performance for their active sites being M-Nx. Due to the commonly random doping behaviors of N species in these CN, it is a tough issue to finely regulate their doping types and clarify their effect on the catalytic property of such catalysts. Herein, we report that the N-doping type in CN can be dominated as pyrrolic-N and pyridinic-N respectively through compounding with different metal oxides. It is found that the proportion of distinct doped N species in CN depends on the acidity and basicity of compounded metal oxide host. Owing to the coordination by pyrrolic-N, the SA Cu catalyst displays an enhanced activity (two-fold) for transfer hydrogenation of quinoline to access the valuable molecule tetrahydroquinoline with a good selectivity (99%) under mild conditions. The higher electron density of SA Cu species induced by the predominate pyrrolic-N coordination benefits the hydrogen transfer process and reduces the energy barrier of the hydrogenation pathway, which accounts for the improved catalytic effeciency.

Journal ArticleDOI
TL;DR: A growing body of evidence suggests that ferroptosis is associated with cancer and neurodegenerative diseases (Alzheimer's disease, Parkinson's disease and Huntington's disease), and the selective induction of ferroPTosis has been adopted as a potential treatment strategy in some kinds of cancer.

Journal ArticleDOI
TL;DR: The role of 2D photothermal nanomaterials in solving water challenges is highlighted and a viable scheme toward the practical use in photothermal materials selection, design, and evaporation systems building is provided.
Abstract: Water shortage is one of the most concerning global challenges in the 21st century. Solar-inspired vaporization employing photothermal nanomaterials is considered to be a feasible and green technology for addressing the water challenge by virtue of abundant and clean solar energy. 2D nanomaterials aroused considerable attention in photothermal evaporation-induced water production owing to their large absorption surface, strong absorption in broadband solar spectrum, and efficient photothermal conversion. Herein, the recent progress of 2D nanomaterials-based photothermal evaporation, mainly including emerging Xenes (phosphorene, antimonene, tellurene, and borophene) and binary-enes (MXenes and transition metal dichalcogenides), is reviewed. Then, the optimization strategies for higher evaporation performance are summarized in terms of modulation of the intrinsic photothermal performance of 2D nanomaterials and design of the complete evaporation system. Finally, the challenges and prospective of various kinds of 2D photothermal nanomaterials are discussed in terms of the photothermal performance, stability, environmental influence, and cost. One important principle is that solutions for water challenges should not introduce new environmental and social problems. This Review aims to highlight the role of 2D photothermal nanomaterials in solving water challenges and provides a viable scheme toward the practical use in photothermal materials selection, design, and evaporation systems building.

Journal ArticleDOI
TL;DR: Wang et al. as mentioned in this paper examined the psychological impact of media use among people indirectly exposed to the disease during the initial phase of the outbreak and found that use of new media, rather than traditional media, was significantly associated with more negative affect, depression, anxiety, and stress.