scispace - formally typeset
Search or ask a question
Institution

University of North Carolina at Chapel Hill

EducationChapel Hill, North Carolina, United States
About: University of North Carolina at Chapel Hill is a education organization based out in Chapel Hill, North Carolina, United States. It is known for research contribution in the topics: Population & Poison control. The organization has 81393 authors who have published 185327 publications receiving 9948508 citations. The organization is also known as: University of North Carolina & North Carolina.


Papers
More filters
Journal ArticleDOI
14 May 2007-Oncogene
TL;DR: The current status of the different approaches and targets that are under evaluation and development for the therapeutic intervention of this key signaling pathway in human disease are summarized.
Abstract: Mitogen-activated protein kinase (MAPK) cascades are key signaling pathways involved in the regulation of normal cell proliferation, survival and differentiation. Aberrant regulation of MAPK cascades contribute to cancer and other human diseases. In particular, the extracellular signal-regulated kinase (ERK) MAPK pathway has been the subject of intense research scrutiny leading to the development of pharmacologic inhibitors for the treatment of cancer. ERK is a downstream component of an evolutionarily conserved signaling module that is activated by the Raf serine/threonine kinases. Raf activates the MAPK/ERK kinase (MEK)1/2 dual-specificity protein kinases, which then activate ERK1/2. The mutational activation of Raf in human cancers supports the important role of this pathway in human oncogenesis. Additionally, the Raf-MEK-ERK pathway is a key downstream effector of the Ras small GTPase, the most frequently mutated oncogene in human cancers. Finally, Ras is a key downstream effector of the epidermal growth factor receptor (EGFR), which is mutationally activated and/or overexpressed in a wide variety of human cancers. ERK activation also promotes upregulated expression of EGFR ligands, promoting an autocrine growth loop critical for tumor growth. Thus, the EGFR-Ras-Raf-MEK-ERK signaling network has been the subject of intense research and pharmaceutical scrutiny to identify novel target-based approaches for cancer treatment. In this review, we summarize the current status of the different approaches and targets that are under evaluation and development for the therapeutic intervention of this key signaling pathway in human disease.

2,635 citations

Journal ArticleDOI
TL;DR: Genetic loci associated with body mass index map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor, which may provide new insights into human body weight regulation.
Abstract: Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and similar to 2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 x 10(-8)), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

2,632 citations

Journal ArticleDOI
06 Sep 2012-Nature
TL;DR: The first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types is presented, revealing novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns.
Abstract: DNase I hypersensitive sites (DHSs) are markers of regulatory DNA and have underpinned the discovery of all classes of cis-regulatory elements including enhancers, promoters, insulators, silencers and locus control regions. Here we present the first extensive map of human DHSs identified through genome-wide profiling in 125 diverse cell and tissue types. We identify ∼2.9 million DHSs that encompass virtually all known experimentally validated cis-regulatory sequences and expose a vast trove of novel elements, most with highly cell-selective regulation. Annotating these elements using ENCODE data reveals novel relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. We connect ∼580,000 distal DHSs with their target promoters, revealing systematic pairing of different classes of distal DHSs and specific promoter types. Patterning of chromatin accessibility at many regulatory regions is organized with dozens to hundreds of co-activated elements, and the transcellular DNase I sensitivity pattern at a given region can predict cell-type-specific functional behaviours. The DHS landscape shows signatures of recent functional evolutionary constraint. However, the DHS compartment in pluripotent and immortalized cells exhibits higher mutation rates than that in highly differentiated cells, exposing an unexpected link between chromatin accessibility, proliferative potential and patterns of human variation. An extensive map of human DNase I hypersensitive sites, markers of regulatory DNA, in 125 diverse cell and tissue types is described; integration of this information with other ENCODE-generated data sets identifies new relationships between chromatin accessibility, transcription, DNA methylation and regulatory factor occupancy patterns. This paper describes the first extensive map of human DNaseI hypersensitive sites — markers of regulatory DNA — in 125 diverse cell and tissue types. Integration of this information with other data sets generated by ENCODE (Encyclopedia of DNA Elements) identified new relationships between chromatin accessibility, transcription, DNA methylation and regulatory-factor occupancy patterns. Evolutionary-conservation analysis revealed signatures of recent functional constraint within DNaseI hypersensitive sites.

2,628 citations

Journal ArticleDOI
TL;DR: These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis, and it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates.
Abstract: The interaction of particles with cells is known to be strongly influenced by particle size, but little is known about the interdependent role that size, shape, and surface chemistry have on cellular internalization and intracellular trafficking. We report on the internalization of specially designed, monodisperse hydrogel particles into HeLa cells as a function of size, shape, and surface charge. We employ a top-down particle fabrication technique called PRINT that is able to generate uniform populations of organic micro- and nanoparticles with complete control of size, shape, and surface chemistry. Evidence of particle internalization was obtained by using conventional biological techniques and transmission electron microscopy. These findings suggest that HeLa cells readily internalize nonspherical particles with dimensions as large as 3 μm by using several different mechanisms of endocytosis. Moreover, it was found that rod-like particles enjoy an appreciable advantage when it comes to internalization rates, reminiscent of the advantage that many rod-like bacteria have for internalization in nonphagocytic cells.

2,617 citations

Journal ArticleDOI
TL;DR: In this article, the efficacy and safety of adding a protease inhibitor to two nucleoside analogues to treat human immunodeficiency virus type 1 (HIV-1) infection are not clear.
Abstract: Background The efficacy and safety of adding a protease inhibitor to two nucleoside analogues to treat human immunodeficiency virus type 1 (HIV-1) infection are not clear. We compared treatment with the protease inhibitor indinavir in addition to zidovudine and lamivudine with treatment with the two nucleosides alone in HIV-infected adults previously treated with zidovudine. Methods A total of 1156 patients not previously treated with lamivudine or protease inhibitors were stratified according to CD4 cell count (50 or fewer vs. 51 to 200 cells per cubic millimeter) and randomly assigned to one of two daily regimens: 600 mg of zidovudine and 300 mg of lamivudine, or that regimen with 2400 mg of indinavir. Stavudine could be substituted for zidovudine. The primary end point was the time to the development of the acquired immunodeficiency syndrome (AIDS) or death. Results The proportion of patients whose disease progressed to AIDS or death was lower with indinavir, zidovudine (or stavudine), and lamivudine (...

2,615 citations


Authors

Showing all 82249 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Salim Yusuf2311439252912
David J. Hunter2131836207050
Irving L. Weissman2011141172504
Eric J. Topol1931373151025
Dennis W. Dickson1911243148488
Scott M. Grundy187841231821
Peidong Yang183562144351
Patrick O. Brown183755200985
Eric Boerwinkle1831321170971
Alan C. Evans183866134642
Anil K. Jain1831016192151
Terrie E. Moffitt182594150609
Aaron R. Folsom1811118134044
Valentin Fuster1791462185164
Network Information
Related Institutions (5)
University of Washington
305.5K papers, 17.7M citations

98% related

Yale University
220.6K papers, 12.8M citations

97% related

University of Pennsylvania
257.6K papers, 14.1M citations

97% related

Columbia University
224K papers, 12.8M citations

97% related

Harvard University
530.3K papers, 38.1M citations

97% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023311
20221,325
202110,885
20209,949
20199,108
20188,477