scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Centre for Human Genetics

FacilityOxford, United Kingdom
About: Wellcome Trust Centre for Human Genetics is a facility organization based out in Oxford, United Kingdom. It is known for research contribution in the topics: Population & Genome-wide association study. The organization has 2122 authors who have published 4269 publications receiving 433899 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work has identified a gene in the CHAC critical region and found 16 different mutations in individuals with chorea-acanthocytosis, which encodes an evolutionarily conserved protein that is probably involved in protein sorting.
Abstract: Chorea-acanthocytosis (CHAC, MIM 200150) is an autosomal recessive neurodegenerative disorder characterized by the gradual onset of hyperkinetic movements and abnormal erythrocyte morphology (acanthocytosis). Neurological findings closely resemble those observed in Huntington disease. We identified a gene in the CHAC critical region and found 16 different mutations in individuals with chorea-acanthocytosis. CHAC encodes an evolutionarily conserved protein that is probably involved in protein sorting.

302 citations

Journal ArticleDOI
TL;DR: A common theme of generalized epidermal dysfunction manifesting as a compromised skin barrier and failure to protect against, or aberrant responses to, microbial insults and antigens is suggested.
Abstract: Atopic dermatitis (AD) is a chronic itching (pruritic) skin disease. It results from a complex interplay between strong genetic and environmental factors. Genome screens of families with AD have implicated chromosomal regions that overlap with other skin diseases and with inflammatory and autoimmune diseases. These, together with candidate gene studies, provide novel insights into the pathogenesis of AD. The findings suggest a common theme of generalized epidermal dysfunction manifesting as a compromised skin barrier and failure to protect against, or aberrant responses to, microbial insults and antigens. Recent genetic advances with high-throughput methods for gene identification, such as DNA microarrays and whole-genome genotyping, will help further dissect this complex trait. This will aid disease-defining criteria and focused therapies for AD.

302 citations

Journal ArticleDOI
01 Jun 2014-Diabetes
TL;DR: By assembling extensive data on continuous glycemic traits, this work has exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.
Abstract: Patients with established type 2 diabetes display both β-cell dysfunction and insulin resistance. To define fundamental processes leading to the diabetic state, we examined the relationship between type 2 diabetes risk variants at 37 established susceptibility loci, and indices of proinsulin processing, insulin secretion, and insulin sensitivity. We included data from up to 58,614 nondiabetic subjects with basal measures and 17,327 with dynamic measures. We used additive genetic models with adjustment for sex, age, and BMI, followed by fixed-effects, inverse-variance meta-analyses. Cluster analyses grouped risk loci into five major categories based on their relationship to these continuous glycemic phenotypes. The first cluster (PPARG, KLF14, IRS1, GCKR) was characterized by primary effects on insulin sensitivity. The second cluster (MTNR1B, GCK) featured risk alleles associated with reduced insulin secretion and fasting hyperglycemia. ARAP1 constituted a third cluster characterized by defects in insulin processing. A fourth cluster (TCF7L2, SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B) was defined by loci influencing insulin processing and secretion without a detectable change in fasting glucose levels. The final group contained 20 risk loci with no clear-cut associations to continuous glycemic traits. By assembling extensive data on continuous glycemic traits, we have exposed the diverse mechanisms whereby type 2 diabetes risk variants impact disease predisposition.

298 citations

Journal ArticleDOI
TL;DR: This work outlines achievements in rat gene discovery to date, shows how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms.
Abstract: The rat is an important system for modeling human disease. Four years ago, the rich 150-year history of rat research was transformed by the sequencing of the rat genome, ushering in an era of exceptional opportunity for identifying genes and pathways underlying disease phenotypes. Genome-wide association studies in human populations have recently provided a direct approach for finding robust genetic associations in common diseases, but identifying the precise genes and their mechanisms of action remains problematic. In the context of significant progress in rat genomic resources over the past decade, we outline achievements in rat gene discovery to date, show how these findings have been translated to human disease, and document an increasing pace of discovery of new disease genes, pathways and mechanisms. Finally, we present a set of principles that justify continuing and strengthening genetic studies in the rat model, and further development of genomic infrastructure for rat research.

296 citations


Authors

Showing all 2127 results

NameH-indexPapersCitations
Mark I. McCarthy2001028187898
John P. A. Ioannidis1851311193612
Gonçalo R. Abecasis179595230323
Simon I. Hay165557153307
Robert Plomin151110488588
Ashok Kumar1515654164086
Julian Parkhill149759104736
James F. Wilson146677101883
Jeremy K. Nicholson14177380275
Hugh Watkins12852491317
Erik Ingelsson12453885407
Claudia Langenberg12445267326
Adrian V. S. Hill12258964613
John A. Todd12151567413
Elaine Holmes11956058975
Network Information
Related Institutions (5)
Howard Hughes Medical Institute
34.6K papers, 5.2M citations

94% related

National Institutes of Health
297.8K papers, 21.3M citations

94% related

University of Massachusetts Medical School
31.8K papers, 1.9M citations

93% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

93% related

Fred Hutchinson Cancer Research Center
30.9K papers, 2.2M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202221
202183
202074
2019134
2018182
2017323