scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The results demonstrate that methods based on accumulations of rare variants discovered through re‐sequencing offer substantially greater power than conventional analysis of GWA data, and thus provide an exciting opportunity for future discovery of genetic determinants of complex traits.
Abstract: Genome-wide association (GWA) studies have proved to be extremely successful in identifying novel common polymorphisms contributing effects to the genetic component underlying complex traits. Nevertheless, one source of, as yet, undiscovered genetic determinants of complex traits are those mediated through the effects of rare variants. With the increasing availability of large-scale re-sequencing data for rare variant discovery, we have developed a novel statistical method for the detection of complex trait associations with these loci, based on searching for accumulations of minor alleles within the same functional unit. We have undertaken simulations to evaluate strategies for the identification of rare variant associations in population-based genetic studies when data are available from re-sequencing discovery efforts or from commercially available GWA chips. Our results demonstrate that methods based on accumulations of rare variants discovered through re-sequencing offer substantially greater power than conventional analysis of GWA data, and thus provide an exciting opportunity for future discovery of genetic determinants of complex traits. Genet. Epidemiol. 34: 188–193, 2010. © 2009 Wiley-Liss, Inc.

504 citations

Journal ArticleDOI
TL;DR: It is shown that point mutations in the seed region of miR-96, a miRNAs expressed in hair cells of the inner ear, result in autosomal dominant, progressive hearing loss and this is the first study implicating a miRNA in a mendelian disorder.
Abstract: Miguel Moreno-Pelayo and colleagues report mutations in the seed region of human miR-96 segregating with progressive hearing loss in two families. In an accompanying paper, Karen Steel and colleagues show that the mouse diminuendo mutant, which also shows progressive hearing loss, carries a similar mutation in the seed region of mouse miR-96. MicroRNAs (miRNAs) bind to complementary sites in their target mRNAs to mediate post-transcriptional repression1,2, with the specificity of target recognition being crucially dependent on the miRNA seed region3. Impaired miRNA target binding resulting from SNPs within mRNA target sites has been shown to lead to pathologies associated with dysregulated gene expression4,5,6,7. However, no pathogenic mutations within the mature sequence of a miRNA have been reported so far. Here we show that point mutations in the seed region of miR-96, a miRNA expressed in hair cells of the inner ear8, result in autosomal dominant, progressive hearing loss. This is the first study implicating a miRNA in a mendelian disorder. The identified mutations have a strong impact on miR-96 biogenesis and result in a significant reduction of mRNA targeting. We propose that these mutations alter the regulatory role of miR-96 in maintaining gene expression profiles in hair cells required for their normal function.

504 citations

Journal ArticleDOI
TL;DR: It is shown that calcified dental plaque on ancient teeth preserves a detailed genetic record throughout this period of transition between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution.
Abstract: The importance of commensal microbes for human health is increasingly recognized, yet the impacts of evolutionary changes in human diet and culture on commensal microbiota remain almost unknown. Two of the greatest dietary shifts in human evolution involved the adoption of carbohydrate-rich Neolithic (farming) diets (beginning ∼10,000 years before the present) and the more recent advent of industrially processed flour and sugar (in ∼1850). Here, we show that calcified dental plaque (dental calculus) on ancient teeth preserves a detailed genetic record throughout this period. Data from 34 early European skeletons indicate that the transition from hunter-gatherer to farming shifted the oral microbial community to a disease-associated configuration. The composition of oral microbiota remained unexpectedly constant between Neolithic and medieval times, after which (the now ubiquitous) cariogenic bacteria became dominant, apparently during the Industrial Revolution. Modern oral microbiotic ecosystems are markedly less diverse than historic populations, which might be contributing to chronic oral (and other) disease in postindustrial lifestyles.

504 citations

Journal ArticleDOI
03 Sep 2020-Nature
TL;DR: High-coverage, ultra-long-read nanopore sequencing is used to create a new human genome assembly that improves on the coverage and accuracy of the current reference (GRCh38) and includes the gap-free, telomere-to-telomere sequence of the X chromosome.
Abstract: After two decades of improvements, the current human reference genome (GRCh38) is the most accurate and complete vertebrate genome ever produced. However, no single chromosome has been finished end to end, and hundreds of unresolved gaps persist1,2. Here we present a human genome assembly that surpasses the continuity of GRCh382, along with a gapless, telomere-to-telomere assembly of a human chromosome. This was enabled by high-coverage, ultra-long-read nanopore sequencing of the complete hydatidiform mole CHM13 genome, combined with complementary technologies for quality improvement and validation. Focusing our efforts on the human X chromosome3, we reconstructed the centromeric satellite DNA array (approximately 3.1 Mb) and closed the 29 remaining gaps in the current reference, including new sequences from the human pseudoautosomal regions and from cancer-testis ampliconic gene families (CT-X and GAGE). These sequences will be integrated into future human reference genome releases. In addition, the complete chromosome X, combined with the ultra-long nanopore data, allowed us to map methylation patterns across complex tandem repeats and satellite arrays. Our results demonstrate that finishing the entire human genome is now within reach, and the data presented here will facilitate ongoing efforts to complete the other human chromosomes. High-coverage, ultra-long-read nanopore sequencing is used to create a new human genome assembly that improves on the coverage and accuracy of the current reference (GRCh38) and includes the gap-free, telomere-to-telomere sequence of the X chromosome.

502 citations

Journal ArticleDOI
TL;DR: A set of clones selected from the publicly available Golden Path of the human genome at 1‐Mb intervals is described and a view in the Ensembl genome browser from which data required for the use of these clones in array CGH and other experiments can be downloaded across the Internet.
Abstract: We have designed DOP-PCR primers specifically for the amplification of large insert clones for use in the construction of DNA microarrays. A bioinformatic approach was used to construct primers that were efficient in the general amplification of human DNA but were poor at amplifying E. coli DNA, a common contaminant of DNA preparations from large insert clones. We chose the three most selective primers for use in printing DNA microarrays. DNA combined from the amplification of large insert clones by use of these three primers and spotted onto glass slides showed more than a sixfold increase in the human to E. coli hybridization ratio when compared to the standard DOP-PCR primer, 6MW. The microarrays reproducibly delineated previously characterized gains and deletions in a cancer cell line and identified a small gain not detected by use of conventional CGH. We also describe a method for the bulk testing of the hybridization characteristics of chromosome-specific clones spotted on microarrays by use of DNA amplified from flow-sorted chromosomes. Finally, we describe a set of clones selected from the publicly available Golden Path of the human genome at 1-Mb intervals and a view in the Ensembl genome browser from which data required for the use of these clones in array CGH and other experiments can be downloaded across the Internet.

501 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764