scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A GWAS on 8,330 Finnish individuals genotyped and imputed at 7.7 million SNPs for a range of 216 serum metabolic phenotypes assessed by NMR of serum samples identified significant associations at 31 loci, including 11 for which there have not been previous reports of associations to a metabolic trait or disorder.
Abstract: Samuli Ripatti and colleagues report a genome-wide association study for human serum metabolites using NMR of serum samples from over 8,000 Finnish individuals. They identify 31 loci associated with at least one of 216 serum metabolic measures.

497 citations

Journal ArticleDOI
TL;DR: A three-stage analysis of genome-wide SNP data in 1,222 German individuals with myocardial infarction and 1,298 controls is presented and suggestive association with a locus on 12q24.31 near HNF1A-C12orf43 is identified.
Abstract: We present a three-stage analysis of genome-wide SNP data in 1,222 German individuals with myocardial infarction and 1,298 controls, in silico replication in three additional genome-wide datasets of coronary artery disease (CAD) and subsequent replication in similar to 25,000 subjects. We identified one new CAD risk locus on 3q22.3 in MRAS (P = 7.44 x 10(-13); OR = 1.15, 95% CI = 1.11-1.19), and suggestive association with a locus on 12q24.31 near HNF1A-C12orf43 (P = 4.81 x 10(-7); OR = 1.08, 95% CI = 1.05-1.11).

497 citations

Journal ArticleDOI
22 May 2017-Nature
TL;DR: It is found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years.
Abstract: The domesticated sunflower, Helianthus annuus L, is a global oil crop that has promise for climate change adaptation, because it can maintain stable yields across a wide variety of environmental conditions, including drought Even greater resilience is achievable through the mining of resistance alleles from compatible wild sunflower relatives, including numerous extremophile species Here we report a high-quality reference for the sunflower genome (36 gigabases), together with extensive transcriptomic data from vegetative and floral organs The genome mostly consists of highly similar, related sequences and required single-molecule real-time sequencing technologies for successful assembly Genome analyses enabled the reconstruction of the evolutionary history of the Asterids, further establishing the existence of a whole-genome triplication at the base of the Asterids II clade and a sunflower-specific whole-genome duplication around 29 million years ago An integrative approach combining quantitative genetics, expression and diversity data permitted development of comprehensive gene networks for two major breeding traits, flowering time and oil metabolism, and revealed new candidate genes in these networks We found that the genomic architecture of flowering time has been shaped by the most recent whole-genome duplication, which suggests that ancient paralogues can remain in the same regulatory networks for dozens of millions of years This genome represents a cornerstone for future research programs aiming to exploit genetic diversity to improve biotic and abiotic stress resistance and oil production, while also considering agricultural constraints and human nutritional needs

497 citations

Journal ArticleDOI
15 Nov 2013-Science
TL;DR: Activated PI3K-δ syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene is described.
Abstract: Genetic mutations cause primary immunodeficiencies (PIDs) that predispose to infections. Here, we describe activated PI3K-δ syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110δ protein, the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M, and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110δ. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110δ inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.

496 citations

Journal ArticleDOI
TL;DR: It is shown that mapping gene expression in defined primary cell populations identifies new cell type–specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility.
Abstract: Trans-acting genetic variants have a substantial, albeit poorly characterized, role in the heritable determination of gene expression Using paired purified primary monocytes and B cells, we identify new predominantly cell type-specific cis and trans expression quantitative trait loci (eQTLs), including multi-locus trans associations to LYZ and KLF4 in monocytes and B cells, respectively Additionally, we observe a B cell-specific trans association of rs11171739 at 12q132, a known autoimmune disease locus, with IP6K2 (P = 58 × 10(-15)), PRIC285 (P = 30 × 10(-10)) and an upstream region of CDKN1A (P = 2 × 10(-52)), suggesting roles for cell cycle regulation and peroxisome proliferator-activated receptor γ (PPARγ) signaling in autoimmune pathogenesis We also find that specific human leukocyte antigen (HLA) alleles form trans associations with the expression of AOAH and ARHGAP24 in monocytes but not in B cells In summary, we show that mapping gene expression in defined primary cell populations identifies new cell type-specific trans-regulated networks and provides insights into the genetic basis of disease susceptibility

494 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764