scispace - formally typeset
Search or ask a question
Institution

Wellcome Trust Sanger Institute

NonprofitCambridge, United Kingdom
About: Wellcome Trust Sanger Institute is a nonprofit organization based out in Cambridge, United Kingdom. It is known for research contribution in the topics: Population & Genome. The organization has 4009 authors who have published 9671 publications receiving 1224479 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA).
Abstract: Chromosomal microarray (CMA) is increasingly utilized for genetic testing of individuals with unexplained developmental delay/intellectual disability (DD/ID), autism spectrum disorders (ASD), or multiple congenital anomalies (MCA). Performing CMA and G-banded karyotyping on every patient substantially increases the total cost of genetic testing. The International Standard Cytogenomic Array (ISCA) Consortium held two international workshops and conducted a literature review of 33 studies, including 21,698 patients tested by CMA. We provide an evidence-based summary of clinical cytogenetic testing comparing CMA to G-banded karyotyping with respect to technical advantages and limitations, diagnostic yield for various types of chromosomal aberrations, and issues that affect test interpretation. CMA offers a much higher diagnostic yield (15%–20%) for genetic testing of individuals with unexplained DD/ID, ASD, or MCA than a G-banded karyotype (~3%, excluding Down syndrome and other recognizable chromosomal syndromes), primarily because of its higher sensitivity for submicroscopic deletions and duplications. Truly balanced rearrangements and low-level mosaicism are generally not detectable by arrays, but these are relatively infrequent causes of abnormal phenotypes in this population (<1%). Available evidence strongly supports the use of CMA in place of G-banded karyotyping as the first-tier cytogenetic diagnostic test for patients with DD/ID, ASD, or MCA. G-banded karyotype analysis should be reserved for patients with obvious chromosomal syndromes (e.g., Down syndrome), a family history of chromosomal rearrangement, or a history of multiple miscarriages.

2,294 citations

Journal ArticleDOI
Douglas F. Easton1, Karen A. Pooley1, Alison M. Dunning1, Paul D.P. Pharoah1, Deborah J. Thompson1, Dennis G. Ballinger, Jeffery P. Struewing2, Jonathan J. Morrison1, Helen I. Field1, Robert Luben1, Nicholas J. Wareham1, Shahana Ahmed1, Catherine S. Healey1, Richard Bowman, Kerstin B. Meyer1, Christopher A. Haiman3, Laurence K. Kolonel, Brian E. Henderson3, Loic Le Marchand, Paul Brennan4, Suleeporn Sangrajrang, Valerie Gaborieau4, Fabrice Odefrey4, Chen-Yang Shen5, Pei-Ei Wu5, Hui-Chun Wang5, Diana Eccles6, D. Gareth Evans7, Julian Peto8, Olivia Fletcher9, Nichola Johnson9, Sheila Seal, Michael R. Stratton10, Nazneen Rahman, Georgia Chenevix-Trench11, Georgia Chenevix-Trench12, Stig E. Bojesen13, Børge G. Nordestgaard13, C K Axelsson13, Montserrat Garcia-Closas2, Louise A. Brinton2, Stephen J. Chanock2, Jolanta Lissowska14, Beata Peplonska15, Heli Nevanlinna16, Rainer Fagerholm16, H Eerola16, Daehee Kang17, Keun-Young Yoo17, Dong-Young Noh17, Sei Hyun Ahn18, David J. Hunter19, Susan E. Hankinson19, David G. Cox19, Per Hall20, Sara Wedrén20, Jianjun Liu21, Yen-Ling Low21, Natalia Bogdanova22, Peter Schu¨rmann22, Do¨rk Do¨rk22, Rob A. E. M. Tollenaar23, Catharina E. Jacobi23, Peter Devilee23, Jan G. M. Klijn24, Alice J. Sigurdson2, Michele M. Doody2, Bruce H. Alexander25, Jinghui Zhang2, Angela Cox26, Ian W. Brock26, Gordon MacPherson26, Malcolm W.R. Reed26, Fergus J. Couch27, Ellen L. Goode27, Janet E. Olson27, Hanne Meijers-Heijboer24, Hanne Meijers-Heijboer28, Ans M.W. van den Ouweland24, André G. Uitterlinden24, Fernando Rivadeneira24, Roger L. Milne29, Gloria Ribas29, Anna González-Neira29, Javier Benitez29, John L. Hopper30, Margaret R. E. McCredie31, Margaret R. E. McCredie11, Margaret R. E. McCredie32, Melissa C. Southey30, Melissa C. Southey11, Graham G. Giles33, Chris Schroen30, Christina Justenhoven34, Christina Justenhoven35, Hiltrud Brauch35, Hiltrud Brauch34, Ute Hamann36, Yon-Dschun Ko, Amanda B. Spurdle12, Jonathan Beesley12, Xiaoqing Chen12, _ kConFab37, Arto Mannermaa37, Veli-Matti Kosma37, Vesa Kataja37, Jaana M. Hartikainen37, Nicholas E. Day1, David Cox, Bruce A.J. Ponder1 
28 Jun 2007-Nature
TL;DR: To identify further susceptibility alleles, a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls was conducted, followed by a third stage in which 30 single nucleotide polymorphisms were tested for confirmation.
Abstract: Breast cancer exhibits familial aggregation, consistent with variation in genetic susceptibility to the disease. Known susceptibility genes account for less than 25% of the familial risk of breast cancer, and the residual genetic variance is likely to be due to variants conferring more moderate risks. To identify further susceptibility alleles, we conducted a two-stage genome-wide association study in 4,398 breast cancer cases and 4,316 controls, followed by a third stage in which 30 single nucleotide polymorphisms (SNPs) were tested for confirmation in 21,860 cases and 22,578 controls from 22 studies. We used 227,876 SNPs that were estimated to correlate with 77% of known common SNPs in Europeans at r2.0.5. SNPs in five novel independent loci exhibited strong and consistent evidence of association with breast cancer (P,1027). Four of these contain plausible causative genes (FGFR2, TNRC9, MAP3K1 and LSP1). At the second stage, 1,792 SNPs were significant at the P,0.05 level compared with an estimated 1,343 that would be expected by chance, indicating that many additional common susceptibility alleles may be identifiable by this approach.

2,288 citations

Journal ArticleDOI
TL;DR: With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources.
Abstract: COSMIC (http://www.sanger.ac.uk/cosmic) curates comprehensive information on somatic mutations in human cancer. Release v48 (July 2010) describes over 136 000 coding mutations in almost 542 000 tumour samples; of the 18 490 genes documented, 4803 (26%) have one or more mutations. Full scientific literature curations are available on 83 major cancer genes and 49 fusion gene pairs (19 new cancer genes and 30 new fusion pairs this year) and this number is continually increasing. Key amongst these is TP53, now available through a collaboration with the IARC p53 database. In addition to data from the Cancer Genome Project (CGP) at the Sanger Institute, UK, and The Cancer Genome Atlas project (TCGA), large systematic screens are also now curated. Major website upgrades now make these data much more mineable, with many new selection filters and graphics. A Biomart is now available allowing more automated data mining and integration with other biological databases. Annotation of genomic features has become a significant focus; COSMIC has begun curating full-genome resequencing experiments, developing new web pages, export formats and graphics styles. With all genomic information recently updated to GRCh37, COSMIC integrates many diverse types of mutation information and is making much closer links with Ensembl and other data resources.

2,270 citations

Journal ArticleDOI
Elise A. Feingold1, Peter J. Good1, Mark S. Guyer1, S. Kamholz1  +193 moreInstitutions (19)
22 Oct 2004-Science
TL;DR: The ENCyclopedia Of DNA Elements (ENCODE) Project is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function.
Abstract: The ENCyclopedia Of DNA Elements (ENCODE) Project aims to identify all functional elements in the human genome sequence. The pilot phase of the Project is focused on a specified 30 megabases (∼1%) of the human genome sequence and is organized as an international consortium of computational and laboratory-based scientists working to develop and apply high-throughput approaches for detecting all sequence elements that confer biological function. The results of this pilot phase will guide future efforts to analyze the entire human genome.

2,248 citations

Journal ArticleDOI
TL;DR: Improvements to the range of Pfam web tools and the first set of PfAm web services that allow programmatic access to the database and associated tools are presented.
Abstract: Pfam is a database of protein families that currently contains 7973 entries (release 180) A recent development in Pfam has enabled the grouping of related families into clans Pfam clans are described in detail, together with the new associated web pages Improvements to the range of Pfam web tools and the first set of Pfam web services that allow programmatic access to the database and associated tools are also presented Pfam is available on the web in the UK (http://wwwsangeracuk/Software/Pfam/), the USA (http://pfamwustledu/), France (http://pfamjouyinrafr/) and Sweden (http://pfamcgbkise/)

2,241 citations


Authors

Showing all 4058 results

NameH-indexPapersCitations
Nicholas J. Wareham2121657204896
Gonçalo R. Abecasis179595230323
Panos Deloukas162410154018
Michael R. Stratton161443142586
David W. Johnson1602714140778
Michael John Owen1601110135795
Naveed Sattar1551326116368
Robert E. W. Hancock15277588481
Julian Parkhill149759104736
Nilesh J. Samani149779113545
Michael Conlon O'Donovan142736118857
Jian Yang1421818111166
Christof Koch141712105221
Andrew G. Clark140823123333
Stylianos E. Antonarakis13874693605
Network Information
Related Institutions (5)
Broad Institute
11.6K papers, 1.5M citations

96% related

Howard Hughes Medical Institute
34.6K papers, 5.2M citations

95% related

Laboratory of Molecular Biology
24.2K papers, 2.1M citations

94% related

Salk Institute for Biological Studies
13.1K papers, 1.6M citations

93% related

National Institutes of Health
297.8K papers, 21.3M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202317
202270
2021836
2020810
2019854
2018764