scispace - formally typeset
Search or ask a question

Showing papers in "ACS central science in 2021"


Journal ArticleDOI
TL;DR: In this article, the authors highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents.
Abstract: Since the definition of the "12 Principles of Green Chemistry" more than 20 years ago, chemists have become increasingly mindful of the need to conserve natural resources and protect the environment through the judicious choice of synthetic routes and materials. The direct activation and functionalization of C-H bonds, bypassing intermediate functional group installation is, in abstracto, step and atom economic, but numerous factors still hinder the sustainability of large-scale applications. In this Outlook, we highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents. We close by examining the progress made in the subfield of aryl C-H borylation from its origins, through highly efficient but precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will depend on industrial uptake, and thus we urge researchers to strive toward sustainable C-H activation.

234 citations


Journal ArticleDOI
TL;DR: In this paper, the authors highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.
Abstract: Efficient and selective molecular syntheses are paramount to inter alia biomolecular chemistry and material sciences as well as for practitioners in chemical, agrochemical, and pharmaceutical industries. Organic electrosynthesis has undergone a considerable renaissance and has thus in recent years emerged as an increasingly viable platform for the sustainable molecular assembly. In stark contrast to early strategies by innate reactivity, electrochemistry was recently merged with modern concepts of organic synthesis, such as transition-metal-catalyzed transformations for inter alia C-H functionalization and asymmetric catalysis. Herein, we highlight the unique potential of organic electrosynthesis for sustainable synthesis and catalysis, showcasing key aspects of exceptional selectivities, the synergism with photocatalysis, or dual electrocatalysis, and novel mechanisms in metallaelectrocatalysis until February of 2021.

199 citations


Journal ArticleDOI
TL;DR: In this paper, various vaccine platforms including inactivated vaccines, protein-based vaccines, viral vector vaccines, and nucleic acid (DNA or mRNA) vaccines are examined, and their ways of producing immunogens in cells.
Abstract: This report examines various vaccine platforms including inactivated vaccines, protein-based vaccines, viral vector vaccines, and nucleic acid (DNA or mRNA) vaccines, and their ways of producing immunogens in cells.

183 citations


Journal ArticleDOI
TL;DR: In this paper, the weak hit perampanel was redesigned to yield multiple noncovalent, nonpeptidic inhibitors with ca. 20 nM IC50 values in a kinetic assay.
Abstract: Starting from our previous finding of 14 known drugs as inhibitors of the main protease (Mpro) of SARS-CoV-2, the virus responsible for COVID-19, we have redesigned the weak hit perampanel to yield multiple noncovalent, nonpeptidic inhibitors with ca. 20 nM IC50 values in a kinetic assay. Free-energy perturbation (FEP) calculations for Mpro-ligand complexes provided valuable guidance on beneficial modifications that rapidly delivered the potent analogues. The design efforts were confirmed and augmented by determination of high-resolution X-ray crystal structures for five analogues bound to Mpro. Results of cell-based antiviral assays further demonstrated the potential of the compounds for treatment of COVID-19. In addition to the possible therapeutic significance, the work clearly demonstrates the power of computational chemistry for drug discovery, especially FEP-guided lead optimization.

147 citations


Journal ArticleDOI
TL;DR: In this paper, the authors present a toolbox of biocatalytic tools and conditions for creating novel transformations and thereby opening new, short pathways to desired target molecules, using defined enzymes for organic transformations, which is also frequently applied in industry.
Abstract: Biocatalysis, using defined enzymes for organic transformations, has become a common tool in organic synthesis, which is also frequently applied in industry. The generally high activity and outstanding stereo-, regio-, and chemoselectivity observed in many biotransformations are the result of a precise control of the reaction in the active site of the biocatalyst. This control is achieved by exact positioning of the reagents relative to each other in a fine-tuned 3D environment, by specific activating interactions between reagents and the protein, and by subtle movements of the catalyst. Enzyme engineering enables one to adapt the catalyst to the desired reaction and process. A well-filled biocatalytic toolbox is ready to be used for various reactions. Providing nonnatural reagents and conditions and evolving biocatalysts enables one to play with the myriad of options for creating novel transformations and thereby opening new, short pathways to desired target molecules. Combining several biocatalysts in one pot to perform several reactions concurrently increases the efficiency of biocatalysis even further.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells.
Abstract: As the COVID-19 pandemic continues to spread, investigating the processes underlying the interactions between SARS-CoV-2 and its hosts is of high importance. Here, we report the identification of CD209L/L-SIGN and the related protein CD209/DC-SIGN as receptors capable of mediating SARS-CoV-2 entry into human cells. Immunofluorescence staining of human tissues revealed prominent expression of CD209L in the lung and kidney epithelia and endothelia. Multiple biochemical assays using a purified recombinant SARS-CoV-2 spike receptor-binding domain (S-RBD) or S1 encompassing both N termal domain and RBD and ectopically expressed CD209L and CD209 revealed that CD209L and CD209 interact with S-RBD. CD209L contains two N-glycosylation sequons, at sites N92 and N361, but we determined that only site N92 is occupied. Removal of the N-glycosylation at this site enhances the binding of S-RBD with CD209L. CD209L also interacts with ACE2, suggesting a role for heterodimerization of CD209L and ACE2 in SARS-CoV-2 entry and infection in cell types where both are present. Furthermore, we demonstrate that human endothelial cells are permissive to SARS-CoV-2 infection, and interference with CD209L activity by a knockdown strategy or with soluble CD209L inhibits virus entry. Our observations demonstrate that CD209L and CD209 serve as alternative receptors for SARS-CoV-2 in disease-relevant cell types, including the vascular system. This property is particularly important in tissues where ACE2 has low expression or is absent and may have implications for antiviral drug development.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the authors discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, CAS reactions could advance chemical sciences in many respects.
Abstract: Asymmetric catalysis has been recognized as the most enabling strategy for accessing chiral molecules in enantioenriched forms. Catalytic asymmetric dearomatization is an emerging and dynamic research subject in asymmetric catalysis, which has received considerable attention in recent years. The direct transformations from readily available aromatic feedstocks to structurally diverse three-dimensional polycyclic molecules make catalytic asymmetric dearomatization reactions of broad interest for both organic synthesis and medicinal chemistry. However, the inherent difficulty for the disruption of aromaticity demands a large energy input during the dearomatization process, which might be incompatible with the conditions generally required by asymmetric catalysis. In this Outlook, we will discuss representative strategies and examples of catalytic asymmetric dearomatization reactions of various aromatic compounds and try to convince readers that by overcoming the above obstacles, catalytic asymmetric dearomatization reactions could advance chemical sciences in many respects.

136 citations


Journal ArticleDOI
TL;DR: In this paper, the development and function of modified nucleobase N1-methylpseudouridine (m1Ψ) in synthetic mRNAs is summarized. And the authors aim to foster understanding and highlight future opportunities for chemical innovation.
Abstract: The novel coronavirus SARS-CoV-2, the cause of the COVID-19 pandemic, has inspired one of the most efficient vaccine development campaigns in human history. A key aspect of COVID-19 mRNA vaccines is the use of the modified nucleobase N1-methylpseudouridine (m1Ψ) to increase their effectiveness. In this Outlook, we summarize the development and function of m1Ψ in synthetic mRNAs. By demystifying how a novel element within these medicines works, we aim to foster understanding and highlight future opportunities for chemical innovation.

125 citations


Journal ArticleDOI
TL;DR: Fully exposed cluster catalysts (FECC) as discussed by the authors offer diverse surface sites formed by an ensemble of metal atoms, for the adsorption and transformation of reactants/intermediates.
Abstract: Increasing attention has been paid to single-atom catalysts (SACs) in heterogeneous catalysis because of their unique electronic properties, maximized atomic utilization efficiency, and potential to serve as a bridge between the heterogeneous and homogeneous catalysis. However, SACs can have limited advantages or even constrained applications for the reactions that require designated metallic states with multiple atoms or surface sites with metal-metal bonds. As a cross-dimensional extension to the concept of SACs, fully exposed cluster catalysts (FECCs) offer diverse surface sites formed by an ensemble of metal atoms, for the adsorption and transformation of reactants/intermediates. More importantly, FECCs have the advantage of maximized atom utilization efficiency. Thus, FECCs provide a novel platform to design effective and efficient catalysts for certain chemical processes. This outlook summarizes recent advances and proposes prospective research directions in the design of catalysts and characterizations of FECCs, together with potential challenges.

125 citations


Journal ArticleDOI
TL;DR: This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances.
Abstract: Borrowing hydrogen is a process that is used to diversify the synthetic utility of commodity alcohols. A catalyst first oxidizes an alcohol by removing hydrogen to form a reactive carbonyl compound. This intermediate can undergo a diverse range of subsequent transformations before the catalyst returns the “borrowed” hydrogen to liberate the product and regenerate the catalyst. In this way, alcohols may be used as alkylating agents whereby the sole byproduct of this one-pot reaction is water. In recent decades, significant advances have been made in this area, demonstrating many effective methods to access valuable products. This outlook highlights the diversity of metal and biocatalysts that are available for this approach, as well as the various transformations that can be performed, focusing on a selection of the most significant and recent advances. By succinctly describing and conveying the versatility of borrowing hydrogen chemistry, we anticipate its uptake will increase across a wider scientific audience, expanding opportunities for further development.

118 citations


Journal ArticleDOI
TL;DR: In this paper, the authors designed subunit vaccine candidates using selfassembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino acid deletion (SΔC-Fer).
Abstract: The development of a safe and effective SARS-CoV-2 vaccine is a public health priority. We designed subunit vaccine candidates using self-assembling ferritin nanoparticles displaying one of two multimerized SARS-CoV-2 spikes: full-length ectodomain (S-Fer) or a C-terminal 70 amino-acid deletion (SΔC-Fer). Ferritin is an attractive nanoparticle platform for production of vaccines, and ferritin-based vaccines have been investigated in humans in two separate clinical trials. We confirmed proper folding and antigenicity of spike on the surface of ferritin by cryo-EM and binding to conformation-specific monoclonal antibodies. After a single immunization of mice with either of the two spike ferritin particles, a lentiviral SARS-CoV-2 pseudovirus assay revealed mean neutralizing antibody titers at least 2-fold greater than those in convalescent plasma from COVID-19 patients. Additionally, a single dose of SΔC-Fer elicited significantly higher neutralizing responses as compared to immunization with the spike receptor binding domain (RBD) monomer or spike ectodomain trimer alone. After a second dose, mice immunized with SΔC-Fer exhibited higher neutralizing titers than all other groups. Taken together, these results demonstrate that multivalent presentation of SARS-CoV-2 spike on ferritin can notably enhance elicitation of neutralizing antibodies, thus constituting a viable strategy for single-dose vaccination against COVID-19.

Journal ArticleDOI
TL;DR: This Outlook gives an overview of phosphorus-based organocatalysis and highlights key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organoph phosphorus compound-mediated single electron transfer processes.
Abstract: Phosphorus-based organocatalysis encompasses several subfields that have undergone rapid growth in recent years. This Outlook gives an overview of its various aspects. In particular, we highlight key advances in three topics: nucleophilic phosphine catalysis, organophosphorus catalysis to bypass phosphine oxide waste, and organophosphorus compound-mediated single electron transfer processes. We briefly summarize five additional topics: chiral phosphoric acid catalysis, phosphine oxide Lewis base catalysis, iminophosphorane super base catalysis, phosphonium salt phase transfer catalysis, and frustrated Lewis pair catalysis. Although it is not catalytic in nature, we also discuss novel discoveries that are emerging in phosphorus(V) ligand coupling. We conclude with some ideas about the future of organophosphorus catalysis.

Journal ArticleDOI
Yuying Fang1, Xiucai Chen1, Qingyun Tan1, Huihao Zhou1, Jun Xu1, Qiong Gu1 
TL;DR: A new ferroptosis inhibitor 9a is reported with a novel mechanism of action that demonstrates that nuclear receptor coactivator 4 (NCOA4), a cargo receptor for ferritinophagy, is the target of 9a and reveals that NCOA4 is a promising drug target.
Abstract: Ferroptosis is an iron-dependent form of oxidative cell death, and the inhibition of ferroptosis is a promising strategy with which to prevent and treat neurological diseases. Herein we report a new ferroptosis inhibitor 9a with a novel mechanism of action. It is demonstrated that nuclear receptor coactivator 4 (NCOA4), a cargo receptor for ferritinophagy, is the target of 9a. Compound 9a blocks ferroptosis by reducing the amount of bioavailable intracellular ferrous iron through disrupting the NCOA4-FTH1 protein-protein interaction. Further studies indicate that 9a directly binds to recombinant protein NCOA4383-522 and effectively blocks the NCOA4383-522-FTH1 interaction. In a rat model of ischemic stroke, 9a significantly ameliorates the ischemic-refusion injury. With the first ligand 9a, this work reveals that NCOA4 is a promising drug target. Additionally, 9a is the first NCOA4-FTH1 interaction inhibitor. This work paves a new road to the development of ferroptosis inhibitors against neurological diseases.

Journal ArticleDOI
TL;DR: In this article, the structure, conformation, and glycosylation of the spike glycoprotein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine are described.
Abstract: Vaccine development against the SARS-CoV-2 virus focuses on the principal target of the neutralizing immune response, the spike (S) glycoprotein. Adenovirus-vectored vaccines offer an effective platform for the delivery of viral antigen, but it is important for the generation of neutralizing antibodies that they produce appropriately processed and assembled viral antigen that mimics that observed on the SARS-CoV-2 virus. Here, we describe the structure, conformation, and glycosylation of the S protein derived from the adenovirus-vectored ChAdOx1 nCoV-19/AZD1222 vaccine. We demonstrate native-like post-translational processing and assembly, and reveal the expression of S proteins on the surface of cells adopting the trimeric prefusion conformation. The data presented here confirm the use of ChAdOx1 adenovirus vectors as a leading platform technology for SARS-CoV-2 vaccines.

Journal ArticleDOI
TL;DR: In this paper, the authors used an extensive heparan sulfate (HS) oligosaccharide library and showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length and sequence-dependent manner.
Abstract: Severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) is causing an unprecedented global pandemic demanding the urgent development of therapeutic strategies. Microarray binding experiments, using an extensive heparan sulfate (HS) oligosaccharide library, showed that the receptor binding domain (RBD) of the spike of SARS-CoV-2 can bind HS in a length- and sequence-dependent manner. A hexasaccharide composed of IdoA2S-GlcNS6S repeating units was identified as the minimal binding epitope. Surface plasmon resonance showed the SARS-CoV-2 spike protein binds with a much higher affinity to heparin (K-D = 55 nM) compared to the RBD (KD = 1 mu M) alone. It was also found that heparin does not interfere in angiotensin-converting enzyme 2 (ACE2) binding or proteolytic processing of the spike. However, exogenous administered heparin or a highly sulfated HS oligosaccharide inhibited RBD binding to cells. Furthermore, an enzymatic removal of HS proteoglycan from physiological relevant tissue resulted in a loss of RBD binding. The data support a model in which HS functions as the point of initial attachment allowing the virus to travel through the glycocalyx by low-affinity high-avidity interactions to reach the cell membrane, where it can engage with ACE2 for cell entry. Microarray binding experiments showed that ACE2 and HS can simultaneously engage with the RBD, and it is likely no dissociation between HS and RBD is required for binding to ACE2. The results highlight the potential of using HS oligosaccharides as a starting material for therapeutic agent development.

Journal ArticleDOI
TL;DR: In this paper, a reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology was used for the detection of SARS-CoV-2 from extracted RNA samples.
Abstract: The COVID-19 pandemic is a global health emergency characterized by the high rate of transmission and ongoing increase of cases globally. Rapid point-of-care (PoC) diagnostics to detect the causative virus, SARS-CoV-2, are urgently needed to identify and isolate patients, contain its spread and guide clinical management. In this work, we report the development of a rapid PoC diagnostic test (<20 min) based on reverse transcriptase loop-mediated isothermal amplification (RT-LAMP) and semiconductor technology for the detection of SARS-CoV-2 from extracted RNA samples. The developed LAMP assay was tested on a real-time benchtop instrument (RT-qLAMP) showing a lower limit of detection of 10 RNA copies per reaction. It was validated against extracted RNA from 183 clinical samples including 127 positive samples (screened by the CDC RT-qPCR assay). Results showed 91% sensitivity and 100% specificity when compared to RT-qPCR and average positive detection times of 15.45 ± 4.43 min. For validating the incorporation of the RT-LAMP assay onto our PoC platform (RT-eLAMP), a subset of samples was tested (n = 52), showing average detection times of 12.68 ± 2.56 min for positive samples (n = 34), demonstrating a comparable performance to a benchtop commercial instrument. Paired with a smartphone for results visualization and geolocalization, this portable diagnostic platform with secure cloud connectivity will enable real-time case identification and epidemiological surveillance.

Journal ArticleDOI
TL;DR: This Outlook summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins.
Abstract: Bioorthogonal cleavage chemistry has been rapidly emerging as a powerful tool for manipulation and gain-of-function studies of biomolecules in living systems. While the initial bond formation-centered bioorthogonal reactions have been widely adopted for labeling, tracing, and capturing biomolecules, the newly developed bond cleavage-enabled bioorthogonal reactions have opened new possibilities for rescuing small molecules as well as biomacromolecules in living systems, allowing multidimensional controls over biological processes in vitro and in vivo. In this Outlook, we first summarized the development and applications of bioorthogonal cleavage reactions (BCRs) that restore the functions of chemical structures as well as more complex networks, including the liberation of prodrugs, release of bioconjugates, and in situ reactivation of intracellular proteins. As we embarked on this fruitful progress, we outlined the unmet scientific needs and future directions along this exciting avenue. We believe that the potential of BCRs will be further unleashed when combined with other frontier technologies, such as genetic code expansion and proximity-enabled chemical labeling.

Journal ArticleDOI
TL;DR: In this paper, a cell-based FlipGFP-PLpro assay is developed to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting, which is a suitable surrogate for screening PLpro inhibitor in the SARS-CoV 2 setting.
Abstract: The papain-like protease (PLpro) of SARS-CoV-2 is a validated antiviral drug target. Through a fluorescence resonance energy transfer-based high-throughput screening and subsequent lead optimization, we identified several PLpro inhibitors including Jun9-72-2 and Jun9-75-4 with improved enzymatic inhibition and antiviral activity compared to GRL0617, which was reported as a SARS-CoV PLpro inhibitor. Significantly, we developed a cell-based FlipGFP assay that can be applied to predict the cellular antiviral activity of PLpro inhibitors in the BSL-2 setting. X-ray crystal structure of PLpro in complex with GRL0617 showed that binding of GRL0617 to SARS-CoV-2 induced a conformational change in the BL2 loop to a more closed conformation. Molecular dynamics simulations showed that Jun9-72-2 and Jun9-75-4 engaged in more extensive interactions than GRL0617. Overall, the PLpro inhibitors identified in this study represent promising candidates for further development as SARS-CoV-2 antivirals, and the FlipGFP-PLpro assay is a suitable surrogate for screening PLpro inhibitors in the BSL-2 setting.

Journal ArticleDOI
TL;DR: In this paper, the imidazolium unit of a cationic polymeric network (SCU-CPN-4) was modified with bulky alkyl groups to avoid its ring-opening reaction induced by OH- because of the steric hindrance effect.
Abstract: Direct removal of 99TcO4- from alkaline nuclear waste is desirable because of the nuclear waste management and environmental protection relevant to nuclear energy but is yet to be achieved given that combined features of decent base-resistance and high uptake selectivity toward anions with low charge density have not been integrated into a single anion-exchange material. Herein, we proposed a strategy overcoming these challenges by rationally modifying the imidazolium unit of a cationic polymeric network (SCU-CPN-4) with bulky alkyl groups avoiding its ring-opening reaction induced by OH- because of the steric hindrance effect. This significantly improves not only the base-resistance but also the affinity toward TcO4- as a result of enhanced hydrophobicity, compared to other existing anion-exchange materials. More importantly, SCU-CPN-4 exhibits record high uptake selectivity, fast sorption kinetics, sufficient robustness, and promising reusability for removing 99TcO4- from the simulated high-level waste stream at the U.S. Savannah River Site, a typical alkaline nuclear waste, in both batch experiment and dynamic column separation test for the first time.

Journal ArticleDOI
TL;DR: In this article, the design and fabrication of single-atom photocatalysts for three different kinds of emerging reactions (i.e., reduction reactions, oxidation reactions, as well as redox reactions) to generate desirable chemicals and/or fuels are discussed.
Abstract: Single-atom photocatalysts have demonstrated an enormous potential in producing value-added chemicals and/or fuels using sustainable and clean solar light to replace fossil fuels causing global energy and environmental issues. These photocatalysts not only exhibit outstanding activities, selectivity, and stabilities due to their distinct electronic structures and unsaturated coordination centers but also tremendously reduce the consumption of catalytic metals owing to the atomic dispersion of catalytic species. Besides, the single-atom active sites facilitate the elucidation of reaction mechanisms and understanding of the structure-performance relationships. Presently, apart from the well-known reactions (H2 production, N2 fixation, and CO2 conversion), various novel reactions are successfully catalyzed by single-atom photocatalysts possessing high efficiency, selectivity, and stability. In this contribution, we summarize and discuss the design and fabrication of single-atom photocatalysts for three different kinds of emerging reactions (i.e., reduction reactions, oxidation reactions, as well as redox reactions) to generate desirable chemicals and/or fuels. The relationships between the composition/structure of single-atom photocatalysts and their activity/selectivity/stability are explained in detail. Additionally, the insightful reaction mechanisms of single-atom photocatalysts are also introduced. Finally, we propose the possible opportunities in this area for the design and fabrication of brand-new high-performance single-atom photocatalysts.

Journal ArticleDOI
TL;DR: In this paper, a short and sustainable synthesis of molnupiravir (MK-4482) from simple raw materials that would minimize the time needed to manufacture and supply moln upiravirus was proposed, enabled by the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1kinase and uridine phosphorylase.
Abstract: Molnupiravir (MK-4482) is an investigational antiviral agent that is under development for the treatment of COVID-19. Given the potential high demand and urgency for this compound, it was critical to develop a short and sustainable synthesis from simple raw materials that would minimize the time needed to manufacture and supply molnupiravir. The route reported here is enabled through the invention of a novel biocatalytic cascade featuring an engineered ribosyl-1-kinase and uridine phosphorylase. These engineered enzymes were deployed with a pyruvate-oxidase-enabled phosphate recycling strategy. Compared to the initial route, this synthesis of molnupiravir is 70% shorter and approximately 7-fold higher yielding. Looking forward, the biocatalytic approach to molnupiravir outlined here is anticipated to have broad applications for streamlining the synthesis of nucleosides in general. © 2021 The Authors. Published by American Chemical Society.

Journal ArticleDOI
TL;DR: In this article, the authors exploited the potential of the asialoglycoprotein receptor (ASGPR), a lysosomal targeting receptor specifically expressed on liver cells, for the degradation of extracellular proteins including membrane proteins.
Abstract: Targeted protein degradation (TPD) technology has drawn significant attention from researchers in both academia and industry. It is rapidly evolved as a new therapeutic modality and also a useful chemical tool in selectively depleting various protein targets. As most efforts focus on cytosolic proteins using PROteolysis TArgeting Chimera (PROTAC), LYsosome TArgeting Chimera (LYTAC) recently emerged as a promising technology to deliver extracellular protein targets to lysosome for degradation through the cation-independent mannose-6-phosphate receptor (CI-M6PR). In this study, we exploited the potential of the asialoglycoprotein receptor (ASGPR), a lysosomal targeting receptor specifically expressed on liver cells, for the degradation of extracellular proteins including membrane proteins. The ligand of ASGPR, triantennary N-acetylgalactosamine (tri-GalNAc), was conjugated to biotin, antibodies, or fragments of antibodies to generate a new class of degraders. We demonstrated that the extracellular protein targets could be successfully internalized and delivered into lysosome for degradation in liver cell lines specifically by these degraders. This work will add a new dimension to TPD with cell type specificity.

Journal ArticleDOI
TL;DR: In this paper, a new treatment for the microphysical behavior of respiratory fluid droplets was applied to a droplet evaporation/sedimentation model and assessed the impact on sedimentation distance, time scale, and particle phase.
Abstract: Aerosols and droplets from expiratory events play an integral role in transmitting pathogens such as SARS-CoV-2 from an infected individual to a susceptible host. However, there remain significant uncertainties in our understanding of the aerosol droplet microphysics occurring during drying and sedimentation and the effect on the sedimentation outcomes. Here, we apply a new treatment for the microphysical behavior of respiratory fluid droplets to a droplet evaporation/sedimentation model and assess the impact on sedimentation distance, time scale, and particle phase. Above a 100 μm initial diameter, the sedimentation outcome for a respiratory droplet is insensitive to composition and ambient conditions. Below 100 μm, and particularly below 80 μm, the increased settling time allows the exact nature of the evaporation process to play a significant role in influencing the sedimentation outcome. For this size range, an incorrect treatment of the droplet composition, or imprecise use of RH or temperature, can lead to large discrepancies in sedimentation distance (with representative values >1 m, >2 m, and >2 m, respectively). Additionally, a respiratory droplet is likely to undergo a phase change prior to sedimenting if initially <100 μm in diameter, provided that the RH is below the measured phase change RH. Calculations of the potential exposure versus distance from the infected source show that the volume fraction of the initial respiratory droplet distribution, in this size range, which remains elevated above 1 m decreases from 1 at 1 m to 0.125 at 2 m.

Journal ArticleDOI
TL;DR: In this article, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level.
Abstract: The sluggish kinetics and unclear mechanism have significantly hindered the development of Li-CO2 batteries. Here, a Li-CO2 battery cathode catalyst based on a porphyrin-based covalent organic framework (TTCOF-Mn) with single metal sites is reported to reveal intrinsic catalytic sites of aprotic CO2 conversion from the molecular level. The battery with TTCOF-Mn exhibits a low overpotential of 1.07 V at 100 mA/g as well as excellent stability at 300 mA/g, which is one of the best Li-CO2 battery cathode catalysts to date. The unique features of TTCOF-Mn including uniform single-Mn(II)-sites, fast Li+ transfer pathways, and high electron transfer efficiency contribute to effective CO2 reduction and Li2CO3 decomposition in the Li-CO2 system. Density functional theory calculations reveal that different metalloporphyrin sites lead to different reaction pathways. The single-Mn(II) sites in TTCOF-Mn can activate CO2 and achieve an efficient four-electron CO2 conversion pathway. It is the first example to reveal the catalytic active sites and clear reaction pathways in aprotic Li-CO2 batteries.

Journal ArticleDOI
TL;DR: In this article, size-selective precipitation of CsPbX3 NCs with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyl octadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm.
Abstract: Ligand-capped nanocrystals (NCs) of lead halide perovskites, foremost fully inorganic CsPbX3 NCs, are the latest generation of colloidal semiconductor quantum dots. They offer a set of compelling characteristics-large absorption cross section, as well as narrow, fast, and efficient photoluminescence with long exciton coherence times-rendering them attractive for applications in light-emitting devices and quantum optics. Monodisperse and shape-uniform, broadly size-tunable, scalable, and robust NC samples are paramount for unveiling their basic photophysics, as well as for putting them into use. Thus far, no synthesis method fulfilling all these requirements has been reported. For instance, long-chain zwitterionic ligands impart the most durable surface coating, but at the expense of reduced size uniformity of the as-synthesized colloid. In this work, we demonstrate that size-selective precipitation of CsPbBr3 NCs coated with a long-chain sulfobetaine ligand, namely, 3-(N,N-dimethyloctadecylammonio)-propanesulfonate, yields monodisperse and sizable fractions (>100 mg inorganic mass) with the mean NC size adjustable in the range between 3.5 and 16 nm and emission peak wavelength between 479 and 518 nm. We find that all NCs exhibit an oblate cuboidal shape with the aspect ratio of 1.2 × 1.2 × 1. We present a theoretical model (effective mass/k·p) that accounts for the anisotropic NC shape and describes the size dependence of the first and second excitonic transition in absorption spectra and explains room-temperature exciton lifetimes. We also show that uniform zwitterion-capped NCs readily form long-range ordered superlattices upon solvent evaporation. In comparison to more conventional ligand systems (oleic acid and oleylamine), supercrystals of zwitterion-capped NCs exhibit larger domain sizes and lower mosaicity. Both kinds of supercrystals exhibit superfluorescence at cryogenic temperatures-accelerated collective emission arising from the coherent coupling of the emitting dipoles.

Journal ArticleDOI
TL;DR: In this paper, site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins.
Abstract: Severe acute respiratory syndrome coronavirus 2 is the causative pathogen of the COVID-19 pandemic which as of March 29, 2021, has claimed 2 776 175 lives worldwide Vaccine development efforts focus on the viral trimeric spike glycoprotein as the main target of the humoral immune response Viral spikes carry glycans that facilitate immune evasion by shielding specific protein epitopes from antibody neutralization, and antigen efficacy is influenced by spike glycoprotein production in vivo Therefore, immunogen integrity is important for glycoprotein-based vaccine candidates Here, we show how site-specific glycosylation differs between virus-derived spikes, wild-type, non-stabilized spikes expressed from a plasmid with a CMV promoter and tPA signal sequence, and commonly used recombinant, engineered spike glycoproteins Furthermore, we show that their distinctive cellular secretion pathways result in different protein glycosylation and secretion patterns, including shedding of spike monomeric subunits for the non-stabilized wild-type spike tested, which may have implications for the resulting immune response and vaccine design

Journal ArticleDOI
TL;DR: Three sequences with nanomolar affinities for RBD are identified, making them potential orthogonal reagents for sandwich immunoassays and serving as a starting point for the development of SARS-CoV-2 diagnostics or conjugates for virus-directed delivery of therapeutics.
Abstract: The β-coronavirus SARS-CoV-2 has caused a global pandemic. Affinity reagents targeting the SARS-CoV-2 spike protein are of interest for the development of therapeutics and diagnostics. We used affi...

Journal ArticleDOI
TL;DR: In this paper, the authors leverage advances in evidential deep learning to demonstrate a new approach to uncertainty quantification for neural network-based molecular structure-property prediction at no additional computational cost.
Abstract: While neural networks achieve state-of-the-art performance for many molecular modeling and structure-property prediction tasks, these models can struggle with generalization to out-of-domain examples, exhibit poor sample efficiency, and produce uncalibrated predictions. In this paper, we leverage advances in evidential deep learning to demonstrate a new approach to uncertainty quantification for neural network-based molecular structure-property prediction at no additional computational cost. We develop both evidential 2D message passing neural networks and evidential 3D atomistic neural networks and apply these networks across a range of different tasks. We demonstrate that evidential uncertainties enable (1) calibrated predictions where uncertainty correlates with error, (2) sample-efficient training through uncertainty-guided active learning, and (3) improved experimental validation rates in a retrospective virtual screening campaign. Our results suggest that evidential deep learning can provide an efficient means of uncertainty quantification useful for molecular property prediction, discovery, and design tasks in the chemical and physical sciences.

Journal ArticleDOI
TL;DR: A data-driven approach to unearth generalized OSDA–zeolite relationships using a comprehensive database comprising of 5,663 synthesis routes for porous materials and adapts a generative neural network capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry.
Abstract: Organic structure directing agents (OSDAs) play a crucial role in the synthesis of micro- and mesoporous materials especially in the case of zeolites. Despite the wide use of OSDAs, their interaction with zeolite frameworks is poorly understood, with researchers relying on synthesis heuristics or computationally expensive techniques to predict whether an organic molecule can act as an OSDA for a certain zeolite. In this paper, we undertake a data-driven approach to unearth generalized OSDA-zeolite relationships using a comprehensive database comprising of 5,663 synthesis routes for porous materials. To generate this comprehensive database, we use natural language processing and text mining techniques to extract OSDAs, zeolite phases, and gel chemistry from the scientific literature published between 1966 and 2020. Through structural featurization of the OSDAs using weighted holistic invariant molecular (WHIM) descriptors, we relate OSDAs described in the literature to different types of cage-based, small-pore zeolites. Lastly, we adapt a generative neural network capable of suggesting new molecules as potential OSDAs for a given zeolite structure and gel chemistry. We apply this model to CHA and SFW zeolites generating several alternative OSDA candidates to those currently used in practice. These molecules are further vetted with molecular mechanics simulations to show the model generates physically meaningful predictions. Our model can automatically explore the OSDA space, reducing the amount of simulation or experimentation needed to find new OSDA candidates.

Journal ArticleDOI
Jiajing Guo1, Tao Wan1, Bowen Li1, Qi Pan1, Huhu Xin1, Yayu Qiu1, Yuan Ping1 
TL;DR: In this article, a series of poly(disulfide)s were synthesized by ring-opening polymerization and demonstrated that the copolymerization of monomer 1 containing diethylenetriamine moieties and monomer 2 containing guanidyl ligands could generate an efficient delivery platform for different forms of CRISPR-Cas9-based genome editors, including plasmid, mRNA, and protein.
Abstract: We synthesized a series of poly(disulfide)s by ring-opening polymerization and demonstrated that the copolymerization of monomer 1 containing diethylenetriamine moieties and monomer 2 containing guanidyl ligands could generate an efficient delivery platform for different forms of CRISPR-Cas9-based genome editors, including plasmid, mRNA, and protein. The excellent delivery performance of designed poly(disulfide)s stems from their delicate molecular structures to interact with genome-editing biomacromolecules, unique delivery pathways to mediate the cellular uptake of CRISPR-Cas9 cargoes, and strong ability to escape the endosome. The degradation of poly(disulfide)s by intracellular glutathione not only promotes the timely release of CRISPR-Cas9 machineries into the cytosol but also minimizes the cytotoxicity that nondegradable polymeric carriers often encounter. These merits collectively account for the excellent ability of poly(disulfide)s to mediate different forms of CRISPR-Cas9 for their efficient genome-editing activities in vitro and in vivo.