scispace - formally typeset
Search or ask a question

Showing papers in "Acta Neuropathologica in 2011"


Journal ArticleDOI
TL;DR: The high mutation frequencies in pleomorphic xanthoastrocytomas, gangliogliomas and extra-cerebellar pilocytic astrocyTomas implicate BRAFV600E mutation as a valuable diagnostic marker for these rare tumor entities.
Abstract: Missense mutations of the V600E type constitute the vast majority of tumor-associated somatic alterations in the v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) gene. Initially described in melanoma, colon and papillary thyroid carcinoma, these alterations have also been observed in primary nervous system tumors albeit at a low frequency. We analyzed exon 15 of BRAF spanning the V600 locus by direct sequencing in 1,320 adult and pediatric tumors of the nervous system including various types of glial, embryonal, neuronal and glioneuronal, meningeal, adenohypophyseal/sellar, and peripheral nervous system tumors. A total of 96 BRAF mutations were detected; 93 of the V600E type and 3 cases with a three base pair insertion between codons 599 and 600. The highest frequencies of BRAFV600E mutations were found in WHO grade II pleomorphic xanthoastrocytomas (42/64; 66%) and pleomorphic xanthoastrocytomas with anaplasia (15/23; 65%), as well as WHO grade I gangliogliomas (14/77; 18%), WHO grade III anaplastic gangliogliomas (3/6) and pilocytic astrocytomas (9/97; 9%). In pilocytic astrocytomas BRAFV600E mutation was strongly associated with extra-cerebellar location (p = 0.009) and was most frequent in diencephalic tumors (4/12; 33%). Glioblastomas and other gliomas were characterized by a low frequency or absence of mutations. No mutations were detected in non-glial tumors, including embryonal tumors, meningiomas, nerve sheath tumors and pituitary adenomas. The high mutation frequencies in pleomorphic xanthoastrocytomas, gangliogliomas and extra-cerebellar pilocytic astrocytomas implicate BRAFV600E mutation as a valuable diagnostic marker for these rare tumor entities. Future clinical trials should address whether BRAFV600E mutant brain tumor patients will benefit from BRAFV600E-directed targeted therapies.

875 citations


Journal ArticleDOI
TL;DR: In this article, Sampathu et al. proposed a new classification system for FTLD-TDP pathology, which is a single harmonized system that replaces the two currently in use.
Abstract: In 2006, two papers were published, each describing pathological heterogeneity in cases of frontotemporal lobar degeneration (FTLD) with ubiquitin-positive, tau-negative inclusions (FTLD-U) [7, 11]. In both studies, large series of cases were evaluated and the investigators felt that they could recognize three distinct histological patterns, based on the morphology and anatomical distribution of ubiquitin immunoreactive neuronal inclusions. The findings of Sampathu et al. were further supported by differential labelling of the pathology, using a panel of novel monoclonal antibodies; whereas, Mackenzie et al. found relatively specific clinicopathological correlations. Most importantly, the pathological features that defined the subtypes in these two studies were almost identical, providing powerful validation of the results. However, because the studies were conducted simultaneously and independently, the numbering of the subtypes, used in the respective papers, did not match (Table 1). Table 1 Proposed new classification system for FTLD-TDP pathology, compared with existing systems Shortly thereafter, further work by one of the two groups led to the identification of the transactive response DNA-binding protein with Mr 43 kD (TDP-43) as the ubiquitinated pathological protein in most cases of FTLD-U as well as the majority of sporadic amyotrophic lateral sclerosis (ALS) and some familial ALS [10]. It was subsequently confirmed that most FTLD-U cases had TDP-43 pathology and that the same pathological patterns could be recognized based on the results of TDP-43 immunohistochemistry (IHC) [1, 2]. By this time, a fourth FTLD-U subtype had been described, specifically associated with the familial syndrome of inclusion body myopathy with Paget’s disease of bone and frontotemporal dementia (IBMPFD) caused by mutations in the valosin-containing protein (VCP) gene [4], and this was also shown to have TDP-43 pathology [9]. As a result, cases of FTLD with TDP-43 pathology are now designated as FTLD-TDP and the term FTLD-U is no longer recommended [8]. The two classification systems for FTLD-U/FTLD-TDP have now gained wide acceptance and have repeatedly been validated by the discovery of additional clinical, genetic and pathological correlations. However, the continued use of two discordant numbering systems proves to be an ongoing source of confusion within the field. Previous attempts, by other groups of authors, to promote one classification over the other have not been successful. To resolve this issue, the principal authors of the original two papers are now proposing a new classification for FTLD-TDP pathology, the sole purpose of which is to provide a single harmonized system that replaces the two currently in use. In developing this new classification, the following principles were adhered to: (1) different pathological subtypes are designated by letters to help distinguish this from the pre-existing number-based systems, (2) the order of subtypes should not exactly match either of the previous systems to avoid any apparent bias, and (3) the order of the subtypes should be based on their relative frequency, with “A” being the most common. The result is summarized in Table 1. Type A is equivalent to type 1 of Mackenzie et al. and type 3 of Sampathu et al., being characterized by numerous short dystrophic neurites (DN) and crescentic or oval neuronal cytoplasmic inclusions (NCI), concentrated primarily in neocortical layer 2. Moderate numbers of lentiform neuronal intranuclear inclusions (NII) are also a common but inconsistent feature of this subtype. Type B matches Mackenzie et al. type 3 and Sampathu et al. type 2, with moderate numbers of NCI, throughout all cortical layers, but very few DN. Type C is the same as Mackenzie et al. type 2 and Sampathu et al. type 1, having a predominance of elongated DN in upper cortical layers, with very few NCI. Finally, Type D refers to the pathology associated with IBMPFD caused by VCP mutations, characterized by numerous short DN and frequent lentiform NII. Based on the results of more recent studies, there are a number of other modifications that we could have considered incorporating into this new system. Additional pathological subtypes could be added; for instance, to describe the TDP-43 pathology that is found in the mesial temporal lobe in a high proportion of cases of Alzheimer’s disease and most other common neurodegenerative conditions [3]. The pathological criteria for each of the subtypes could be expanded to include characteristic findings in subcortical regions [5, 6]. The description of the pathological features could be modified to take into account the greater sensitivity and specificity of TDP-43 IHC, which may demonstrate additional findings, not recognized with the ubiquitin immunostaining techniques upon which the original classifications were based (such as neuronal “pre-inclusions”) [2]. Although these and other recent findings represent important advances in our understanding of FTLD-TDP, most have not yet been broadly replicated or completely defined. Therefore, in order to make the transition to a new classification as simple and widely acceptable as possible and, most importantly, to allow for direct translation with the currently existing systems, we are not proposing any other significant changes, beyond the coding of the subtypes. In summary, we believed that adoption of a single harmonized system for the classification of FTLD-TDP neuropathology would greatly improve communication within the rapidly advancing field of FTLD diagnosis and research. Future attempts to resolve any outstanding issues related to the practical implementation and interpretation of FTLD pathological classification should also benefit. As indicated by their inclusion as co-authors on this paper, this proposal has received the unanimous support of all of the neuropathologists involved in the original two studies [7, 11].

782 citations


Journal ArticleDOI
TL;DR: Findings may indicate that the Alzheimer’s disease-related pathological process leading to neurofibrillary tangle formation does not begin in the cerebral cortex but, rather, in select subcortical nuclei, and it may start quite early, i.e., before puberty or in early young adulthood.
Abstract: Brains of 42 individuals between the ages of 4 and 29 were examined with antibodies (AT8, 4G8) and silver stains for the presence of intraneuronal and extracellular protein aggregates associated with Alzheimer’s disease. Thirty-eight of 42 (38/42) cases displayed abnormally phosphorylated tau protein (pretangle material) in nerve cells or in portions of their cellular processes, and 41/42 individuals showed no extracellular amyloid-β protein deposition or neuritic plaques—an individual with Down syndrome was the only exception. In 16/42 cases abnormal tau was found in the transentorhinal region, and in 3/42 cases this site was Gallyas-positive for isolated NFTs (NFT stage I). Of 26 cases that lacked abnormal tau in the transentorhinal region, 4 did not show pretangle material at subcortical sites. The remaining 22 of these same 26 cases, however, had subcortical lesions confined to non-thalamic nuclei with diffuse projections to the cerebral cortex, and, remarkably, in 19/22 individuals the pretangle material was confined to the noradrenergic coeruleus/subcoeruleus complex. Assuming the pretangle alterations are not transient and do not regress, these findings may indicate that the Alzheimer’s disease-related pathological process leading to neurofibrillary tangle formation does not begin in the cerebral cortex but, rather, in select subcortical nuclei, and it may start quite early, i.e., before puberty or in early young adulthood.

676 citations


Journal ArticleDOI
TL;DR: The development of a monoclonal BRAF V600E mutation-specific antibody that can differentiate BRAFV600E and wild type protein in routinely processed formalin-fixed and paraffin-embedded tissue is described.
Abstract: Activating mutations of the serine threonine kinase v-RAF murine sarcoma viral oncogene homolog B1 (BRAF) are frequent in benign and malignant human tumors and are emerging as an important biomarker. Over 95% of BRAF mutations are of the V600E type and specific small molecular inhibitors are currently under pre-clinical or clinical investigation. BRAF mutation status is determined by DNA-based methods, most commonly by sequencing. Here we describe the development of a monoclonal BRAF V600E mutation-specific antibody that can differentiate BRAF V600E and wild type protein in routinely processed formalin-fixed and paraffin-embedded tissue. A total of 47 intracerebral melanoma metastases and 21 primary papillary thyroid carcinomas were evaluated by direct sequencing of BRAF and by immunohistochemistry using the BRAF V600E mutation-specific antibody clone VE1. Correlation of VE1 immunohistochemistry and BRAF sequencing revealed a perfect match for both papillary thyroid carcinomas and melanoma metastases. The staining intensity in BRAF V600E mutated tumor samples ranged from weak to strong. The generally homogenous VE1 staining patterns argue against a clonal heterogeneity of the tumors investigated. Caution is essential when only poorly preserved tissue is available for VE1 immunohistochemical analysis or when tissues with only little total BRAF protein are analyzed. Immunohistochemistry using antibody VE1 may substantially facilitate molecular analysis of BRAF V600E status for diagnostic, prognostic, and predictive purposes.

459 citations


Journal ArticleDOI
TL;DR: A robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples is described and the first outcome data based on a clinical trial cohort and novel data on how molecular sub groups are distributed across the range of disease are provided.
Abstract: Medulloblastoma is heterogeneous, being characterized by molecular subgroups that demonstrate distinct gene expression profiles. Activation of the WNT or SHH signaling pathway characterizes two of these molecular subgroups, the former associated with low-risk disease and the latter potentially targeted by novel SHH pathway inhibitors. This manuscript reports the validation of a novel diagnostic immunohistochemical method to distinguish SHH, WNT, and non-SHH/WNT tumors and details their associations with clinical, pathological and cytogenetic variables. A cohort (n = 235) of medulloblastomas from patients aged 0.4–52 years was studied for expression of four immunohistochemical markers: GAB1, β-catenin, filamin A, and YAP1. Immunoreactivity (IR) for GAB1 characterizes only SHH tumors and nuclear IR for β-catenin only WNT tumors. IRs for filamin A and YAP1 identify SHH and WNT tumors. SHH, WNT, and non-SHH/WNT tumors contributed 31, 14, and 55% to the series. All desmoplastic/nodular (D/N) medulloblastomas were SHH tumors, while most WNT tumors (94%) had a classic phenotype. Monosomy 6 was strongly associated with WNT tumors, while PTCH1 loss occurred almost exclusively among SHH tumors. MYC or MYCN amplification and chromosome 17 imbalance occurred predominantly among non-SHH/WNT tumors. Among patients aged 3–16 years and entered onto the SIOP PNET3 trial, outcome was significantly better for children with WNT tumors, when compared to SHH or non-SHH/WNT tumors, which showed similar survival curves. However, high-risk factors (M+ disease, LC/A pathology, MYC amplification) significantly influenced survival in both SHH and non-SHH/WNT groups. We describe a robust method for detecting SHH, WNT, and non-SHH/WNT molecular subgroups in formalin-fixed medulloblastoma samples. In corroborating other studies that indicate the value of combining clinical, pathological, and molecular variables in therapeutic stratification schemes for medulloblastoma, we also provide the first outcome data based on a clinical trial cohort and novel data on how molecular subgroups are distributed across the range of disease.

459 citations


Journal ArticleDOI
TL;DR: In this paper, a subset of TDP-43 proteinopathy patients who have unusual and abundant p62 positive, TDP43 negative inclusions in the cerebellum and hippocampus were found to carry hexanucleotide repeat expansion in C9orf72.
Abstract: Neuronal cytoplasmic inclusions (NCIs) containing phosphorylated TDP-43 (p-TDP-43) are the pathological hallmarks of motor neuron disease/amyotrophic lateral sclerosis (MND/ALS) and FTLD-TDP. The vast majority of NCIs in the brain and spinal cord also label for ubiquitin and p62, however, we have previously reported a subset of TDP-43 proteinopathy patients who have unusual and abundant p62 positive, TDP-43 negative inclusions in the cerebellum and hippocampus. Here we sought to determine whether these cases carry the hexanucleotide repeat expansion in C9orf72. Repeat primer PCR was performed in 36 MND/ALS, FTLD-MND/ALS and FTLD-TDP cases and four controls. Fourteen individuals with the repeat expansion were detected. In all the 14 expansion mutation cases there were abundant globular and star-shaped p62 positive NCIs in the pyramidal cell layer of the hippocampus, the vast majority of which were p-TDP-43 negative. p62 positive NCIs were also abundant in the cerebellar granular and molecular layers in all cases and in Purkinje cells in 12/14 cases but they were only positive for p-TDP-43 in the granular layer of one case. Abundant p62 positive, p-TDP-43 negative neuronal intranuclear inclusions (NIIs) were seen in 12/14 cases in the pyramidal cell layer of the hippocampus and in 6/14 cases in the cerebellar granular layer. This unusual combination of inclusions appears pathognomonic for C9orf72 repeat expansion positive MND/ALS and FTLD-TDP which we believe form a pathologically distinct subset of TDP-43 proteinopathies. Our results suggest that proteins other than TDP-43 are binding p62 and aggregating in response to the mutation which may play a mechanistic role in neurodegeneration.

439 citations


Journal ArticleDOI
TL;DR: Clinical diagnosis of bvFTD does not have a strong relationship to any FTLD subtype or specific pathology and therefore remains a diagnostic challenge, but some evidence suggests improved clinicopathological association of bVFTD by further refining clinical characteristics.
Abstract: Frontotemporal lobar degeneration (FTLD) is the umbrella term encompassing a heterogeneous group of pathological disorders. With recent discoveries, the FTLDs have been show to classify nicely into three main groups based on the major protein deposited in the brain: FTLD-tau, FTLD-TDP and FTLD-FUS. These pathological groups, and their specific pathologies, underlie a number of well-defined clinical syndromes, including three frontotemporal dementia (FTD) variants [behavioral variant frontotemporal dementia (bvFTD), progressive non-fluent aphasia, and semantic dementia (SD)], progressive supranuclear palsy syndrome (PSPS) and corticobasal syndrome (CBS). Understanding the neuropathological background of the phenotypic variability in FTD, PSPS and CBS requires large clinicopathological studies. We review current knowledge on the relationship between the FTLD pathologies and clinical syndromes, and pool data from a number of large clinicopathological studies that collectively provide data on 544 cases. Strong relationships were identified as follows: FTD with motor neuron disease and FTLD-TDP; SD and FTLD-TDP; PSPS and FTLD-tau; and CBS and FTLD-tau. However, the relationship between some of these clinical diagnoses and specific pathologies is not so clear cut. In addition, the clinical diagnosis of bvFTD does not have a strong relationship to any FTLD subtype or specific pathology and therefore remains a diagnostic challenge. Some evidence suggests improved clinicopathological association of bvFTD by further refining clinical characteristics. Unlike FTLD-tau and FTLD-TDP, FTLD-FUS has been less well characterized, with only 69 cases reported. However, there appears to be some associations between clinical phenotypes and FTLD-FUS pathologies. Clinical diagnosis is therefore promising in predicting molecular pathology.

369 citations


Journal ArticleDOI
TL;DR: The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.
Abstract: Abnormal aggregates of the synaptic protein, α-synuclein, are the dominant pathology in syndromes known as the synucleinopathies. The cellular aggregation of the protein occurs in three distinct types of inclusions in three main clinical syndromes. α-Synuclein deposits in neuronal Lewy bodies and Lewy neurites in idiopathic Parkinson’s disease (PD) and dementia with Lewy bodies (DLB), as well as incidentally in a number of other conditions. In contrast, α-synuclein deposits largely in oligodendroglial cytoplasmic inclusions in multiple system atrophy (MSA). Lastly, α-synuclein also deposits in large axonal spheroids in a number of rarer neuroaxonal dystrophies. Disorders are usually defined by their most dominant pathology, but for the synucleinopathies, clinical heterogeneity within the main syndromes is well documented. MSA was originally viewed as three different clinical phenotypes due to different anatomical localization of the lesions. In PD, recent meta-analyses have identified four main clinical phenotypes, and clinicopathological correlations suggest that more severe and more rapid progression of pathology with chronological age, as well as the involvement of additional neuropathologies, differentiates these phenotypes. In DLB, recent large studies show that clinical diagnosis is too insensitive to identify the syndrome itself, although clinicopathological studies suggest variable clinical features occur in the different pathological forms of this syndrome (pure DLB, DLB with Alzheimer’s disease (AD), and AD with amygdala predominant Lewy pathology). The recognition of considerable heterogeneity within the synucleinopathy syndromes is important for the identification of factors involved in changing their pathological phenotype.

348 citations


Journal ArticleDOI
TL;DR: The hypothesis that patterns of miRNA expression in cortical GM may contribute to AD pathogenetically is supported, because the aggregate change in mi RNA expression observed early in the disease would be predicted to cause profound changes in gene expression.
Abstract: MicroRNA (miRNA) expression was assessed in human cerebral cortical gray matter (GM) and white matter (WM) in order to provide the first insights into the difference between GM and WM miRNA repertoires across a range of Alzheimer's disease (AD) pathology. RNA was isolated separately from GM and WM portions of superior and middle temporal cerebral cortex (N = 10 elderly females, postmortem interval < 4 h). miRNA profiling experiments were performed using state-of-the-art Exiqon© LNA-microarrays. A subset of miRNAs that appeared to be strongly expressed according to the microarrays did not appear to be conventional miRNAs according to Northern blot analyses. Some well-characterized miRNAs were substantially enriched in WM as expected. However, most of the miRNA expression variability that correlated with the presence of early AD-related pathology was seen in GM. We confirm that downregulation of a set of miRNAs in GM (including several miR-15/107 genes and miR-29 paralogs) correlated strongly with the density of diffuse amyloid plaques detected in adjacent tissue. A few miRNAs were differentially expressed in WM, including miR-212 that is downregulated in AD and miR-424 which is upregulated in AD. The expression of certain miRNAs correlates with other miRNAs across different cases, and particular subsets of miRNAs are coordinately expressed in relation to AD-related pathology. These data support the hypothesis that patterns of miRNA expression in cortical GM may contribute to AD pathogenetically, because the aggregate change in miRNA expression observed early in the disease would be predicted to cause profound changes in gene expression.

311 citations


Journal ArticleDOI
TL;DR: The idea of possible disease progression from the locus coeruleus to the transentorhinal region of the cerebral cortex via neuron-to-neuron transmission and transsynaptic transport of tau protein aggregates is discussed, and it is speculated that such a mechanism together with the very long prodromal period that characterizes Alzheimer's disease may be indicative of a prion-like pathogenesis for this tauopathy.
Abstract: There is increasing interest in the early phase of Alzheimer's disease before severe neuronal dysfunction occurs, but it is still not known when or where in the central nervous system the underlying pathological process begins. In this review, we discuss the idea of possible disease progression from the locus coeruleus to the transentorhinal region of the cerebral cortex via neuron-to-neuron transmission and transsynaptic transport of tau protein aggregates, and we speculate that such a mechanism together with the very long prodromal period that characterizes Alzheimer's disease may be indicative of a prion-like pathogenesis for this tauopathy. The fact that AT8-immunoreactive abnormal tau aggregates (pretangles) develop within proximal axons of noradrenergic coeruleus projection neurons in the absence of both tau lesions (pretangles, NFTs/NTs) in the transentorhinal region as well as cortical amyloid-β pathology means that currently used neuropathological stages for Alzheimer's disease will have to be reclassified.

308 citations


Journal ArticleDOI
TL;DR: It may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging, as AD fails all of these criteria.
Abstract: Human studies are reviewed concerning whether “aging”-related mechanisms contribute to Alzheimer’s disease (AD) pathogenesis. AD is defined by specific neuropathology: neuritic amyloid plaques and neocortical neurofibrillary tangles. AD pathology is driven by genetic factors related not to aging per se, but instead to the amyloid precursor protein (APP). In contrast to genes involved in APP-related mechanisms, there is no firm connection between genes implicated in human “accelerated aging” diseases (progerias) and AD. The epidemiology of AD in advanced age is highly relevant but deceptively challenging to address given the low autopsy rates in most countries. In extreme old age, brain diseases other than AD approximate AD prevalence while the impact of AD pathology appears to peak by age 95 and decline thereafter. Many distinct brain diseases other than AD afflict older human brains and contribute to cognitive impairment. Additional prevalent pathologies include cerebrovascular disease and hippocampal sclerosis, both high-morbidity brain diseases that appear to peak in incidence later than AD chronologically. Because of these common brain diseases of extreme old age, the epidemiology differs between clinical “dementia” and the subset of dementia cases with AD pathology. Additional aging-associated mechanisms for cognitive decline such as diabetes and synapse loss have been linked to AD and these hypotheses are discussed. Criteria are proposed to define an “aging-linked” disease, and AD fails all of these criteria. In conclusion, it may be most fruitful to focus attention on specific pathways involved in AD rather than attributing it to an inevitable consequence of aging.

Journal ArticleDOI
TL;DR: The present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis, and there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group.
Abstract: Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are part of a disease spectrum associated with TDP-43 pathology Strong evidence supporting this is the existence of kindreds with family members affected by FTD, ALS or mixed features of FTD and ALS, referred to as FTD-MND Some of these families have linkage to chromosome 9, with hexanucleotide expansion mutation in a noncoding region of C9ORF72 Discovery of the mutation defines c9FTD/ALS Prior to discovery of mutations in C9ORF72, it was assumed that TDP-43 pathology in c9FTD/ALS was uniform In this study, we examined the neuropathology and clinical features of 20 cases of c9FTD/ALS from a brain bank for neurodegenerative disorders Included are six patients clinically diagnosed with ALS, eight FTD, one FTD-MND and four Alzheimer-type dementia Clinical information was unavailable for one patient Pathologically, the cases all had TDP-43 pathology, but there were three major pathologic groups: ALS, FTLD-MND and FTLD-TDP The ALS cases were morphologically similar to typical sporadic ALS with almost no extramotor TDP-43 pathology; all had oligodendroglial cytoplasmic inclusions The FTLD-MND showed predominantly Mackenzie Type 3 TDP-43 pathology, and all had ALS-like pathology in motor neurons, but more extensive extramotor pathology, with oligodendroglial cytoplasmic inclusions and infrequent hippocampal sclerosis The FTLD-TDP cases had several features similar to FTLD-TDP due to mutations in the gene for progranulin, including Mackenzie Type 1 TDP-43 pathology with neuronal intranuclear inclusions and hippocampal sclerosis FTLD-TDP patients were older and some were thought to have Alzheimer-type dementia In addition to the FTD and ALS clinical presentations, the present study shows that c9FTD/ALS can have other presentations, possibly related to age of onset and the presence of hippocampal sclerosis Moreover, there is pathologic heterogeneity not only between ALS and FTLD, but also within the FTLD group Further studies are needed to address the molecular mechanism of clinical and pathological heterogeneity of c9FTD/ALS due to mutations in C9ORF72

Journal ArticleDOI
TL;DR: The hypothesis that perivascular solute drainage from the brain is altered both in the ageing brain and as a consequence of CAA is supported, which has implications for the success of therapeutic strategies for the treatment of AD that rely upon the health of the ageing cerebral vasculature.
Abstract: The deposition of amyloid-β (Aβ) peptides in the walls of leptomeningeal and cortical blood vessels as cerebral amyloid angiopathy (CAA) is present in normal ageing and the majority of Alzheimer’s disease (AD) brains. The failure of clearance mechanisms to eliminate Aβ from the brain contributes to the development of sporadic CAA and AD. Here, we investigated the effects of CAA and ageing on the pattern of perivascular drainage of solutes in the brains of naive mice and in the Tg2576 mouse model of AD. We report that drainage of small molecular weight dextran along cerebrovascular basement membranes is impaired in the hippocampal capillaries and arteries of 22-month-old wild-type mice compared to 3- and 7-month-old animals, which was associated with age-dependent changes in capillary density. Age-related alterations in the levels of laminin, fibronectin and perlecan in vascular basement membranes were also noted in wild-type mice. Furthermore, dextran was observed in the walls of veins of Tg2576 mice in the presence of CAA, suggesting that deposition of Aβ in vessel walls disrupts the normal route of elimination of solutes from the brain parenchyma. These data support the hypothesis that perivascular solute drainage from the brain is altered both in the ageing brain and as a consequence of CAA. These findings have implications for the success of therapeutic strategies for the treatment of AD that rely upon the health of the ageing cerebral vasculature.

Journal ArticleDOI
TL;DR: In this paper, a seven-center inter-laboratory standardization study for cerebrospinal fluid (CSF) total tau (t-tau), phospho-Tau (p-tAU(181), and Aβ(1-42) was conducted as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI).
Abstract: The close correlation between abnormally low pre-mortem cerebrospinal fluid (CSF) concentrations of amyloid-β1-42 (Aβ(1-42)) and plaque burden measured by amyloid imaging as well as between pathologically increased levels of CSF tau and the extent of neurodegeneration measured by MRI has led to growing interest in using these biomarkers to predict the presence of AD plaque and tangle pathology. A challenge for the widespread use of these CSF biomarkers is the high variability in the assays used to measure these analytes which has been ascribed to multiple pre-analytical and analytical test performance factors. To address this challenge, we conducted a seven-center inter-laboratory standardization study for CSF total tau (t-tau), phospho-tau (p-tau(181)) and Aβ(1-42) as part of the Alzheimer's Disease Neuroimaging Initiative (ADNI). Aliquots prepared from five CSF pools assembled from multiple elderly controls (n = 3) and AD patients (n = 2) were the primary test samples analyzed in each of three analytical runs by the participating laboratories using a common batch of research use only immunoassay reagents (INNO-BIA AlzBio3, xMAP technology, from Innogenetics) on the Luminex analytical platform. To account for the combined effects on overall precision of CSF samples (fixed effect), different laboratories and analytical runs (random effects), these data were analyzed by mixed-effects modeling with the following results: within center %CV 95% CI values (mean) of 4.0-6.0% (5.3%) for CSF Aβ(1-42); 6.4-6.8% (6.7%) for t-tau and 5.5-18.0% (10.8%) for p-tau(181) and inter-center %CV 95% CI range of 15.9-19.8% (17.9%) for Aβ(1-42), 9.6-15.2% (13.1%) for t-tau and 11.3-18.2% (14.6%) for p-tau(181). Long-term experience by the ADNI biomarker core laboratory replicated this degree of within-center precision. Diagnostic threshold CSF concentrations for Aβ(1-42) and for the ratio t-tau/Aβ(1-42) were determined in an ADNI independent, autopsy-confirmed AD cohort from whom ante-mortem CSF was obtained, and a clinically defined group of cognitively normal controls (NCs) provides statistically significant separation of those who progressed from MCI to AD in the ADNI study. These data suggest that interrogation of ante-mortem CSF in cognitively impaired individuals to determine levels of t-tau, p-tau(181) and Aβ(1-42), together with MRI and amyloid imaging biomarkers, could replace autopsy confirmation of AD plaque and tangle pathology as the "gold standard" for the diagnosis of definite AD in the near future.

Journal ArticleDOI
TL;DR: First and preliminary data are reported that demonstrate apolipoprotein E (ApoE) immunoreactivity in white matter lesions and support epidemiological findings indicating that ApoE is another factor possibly related to white matter lesion occurrence.
Abstract: White matter changes occur endemically in routine magnetic resonance imaging (MRI) scans of elderly persons. MRI appearance and histopathological correlates of white matter changes are heterogeneous. Smooth periventricular hyperintensities, including caps around the ventricular horns, periventricular lining and halos are likely to be of non-vascular origin. They relate to a disruption of the ependymal lining with subependymal widening of the extracellular space and have to be differentiated from subcortical and deep white matter abnormalities. For the latter a distinction needs to be made between punctate, early confluent and confluent types. Although punctate white matter lesions often represent widened perivascular spaces without substantial ischemic tissue damage, early confluent and confluent lesions correspond to incomplete ischemic destruction. Punctate abnormalities on MRI show a low tendency for progression, while early confluent and confluent changes progress rapidly. The causative and modifying pathways involved in the occurrence of sporadic age-related white matter changes are still incompletely understood, but recent microarray and genome-wide association approaches increased the notion of pathways that might be considered as targets for therapeutic intervention. The majority of differentially regulated transcripts in white matter lesions encode genes associated with immune function, cell cycle, proteolysis, and ion transport. Genome-wide association studies identified six SNPs mapping to a locus on chromosome 17q25 to be related to white matter lesion load in the general population. We also report first and preliminary data that demonstrate apolipoprotein E (ApoE) immunoreactivity in white matter lesions and support epidemiological findings indicating that ApoE is another factor possibly related to white matter lesion occurrence. Further insights come from modern MRI techniques, such as diffusion tensor and magnetization transfer imaging, as they provide tools for the characterization of normal-appearing brain tissue beyond what can be expected from standard MRI scans. There is a need for additional pre- and postmortem studies in humans, including these new imaging techniques.

Journal ArticleDOI
TL;DR: It is shown that activated AMPK (p-AMPK) is abnormally accumulated in cerebral neurons in 3R+4R and 3R tauopathies, such as Alzheimer's disease, tangle-predominant dementia, Guam Parkinson dementia complex, Pick’s disease, and frontotemporal dementia with parkinsonism linked to chromosome 17.
Abstract: Tauopathies represent a class of neurodegenerative disorders characterized by abnormal tau phosphorylation and aggregation into neuronal paired helical filaments (PHFs) and neurofibrillary tangles. AMP-activated protein kinase (AMPK) is a metabolic sensor expressed in most mammalian cell types. In the brain, AMPK controls neuronal maintenance and is overactivated during metabolic stress. Here, we show that activated AMPK (p-AMPK) is abnormally accumulated in cerebral neurons in 3R+4R and 3R tauopathies, such as Alzheimer's disease (AD), tangle-predominant dementia, Guam Parkinson dementia complex, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17, and to a lesser extent in some neuronal and glial populations in the 4R tauopathies, progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), and argyrophilic grain disease. In AD brains, p-AMPK accumulation decorated neuropil threads and dystrophic neurites surrounding amyloid plaques, and appeared in more than 90% of neurons bearing pre-tangles and tangles. Granular p-AMPK immunoreactivity was also observed in several tauopathies in apparently unaffected neurons devoid of tau inclusion, suggesting that AMPK activation preceded tau accumulation. Less p-AMPK pathology was observed in PSP and CBD, where minimal p-AMPK accumulation was also found in tangle-positive glial cells. p-AMPK was not found in purified PHFs, indicating that p-AMPK did not co-aggregate with tau in tangles. Finally, in vitro assays showed that AMPK can directly phosphorylate tau at Thr-231 and Ser-396/404. Thus, activated AMPK abnormally accumulated in tangle- and pre-tangle-bearing neurons in all major tauopathies. By controlling tau phosphorylation, AMPK might regulate neurodegeneration and therefore could represent a novel common determinant in tauopathies.

Journal ArticleDOI
TL;DR: The findings of this study further underline the fundamental role of RAF kinase fusion products as a tumor-specific marker and an ideally suited drug target for PA.
Abstract: Activation of the MAPK signaling pathway has been shown to be a unifying molecular feature in pilocytic astrocytoma (PA). Genetically, tandem duplications at chromosome 7q34 resulting in KIAA1549–BRAF fusion genes constitute the most common mechanism identified to date. To elucidate alternative mechanisms of aberrant MAPK activation in PA, we screened 125 primary tumors for RAF fusion genes and mutations in KRAS, NRAS, HRAS, PTPN11, BRAF and RAF1. Using microarray-based comparative genomic hybridization (aCGH), we identified in three cases an interstitial deletion of ~2.5 Mb as a novel recurrent mechanism forming BRAF gene fusions with FAM131B, a currently uncharacterized gene on chromosome 7q34. This deletion removes the BRAF N-terminal inhibitory domains, giving a constitutively active BRAF kinase. Functional characterization of the novel FAM131B–BRAF fusion demonstrated constitutive MEK phosphorylation potential and transforming activity in vitro. In addition, our study confirmed previously reported BRAF and RAF1 fusion variants in 72% (90/125) of PA. Mutations in BRAF (8/125), KRAS (2/125) and NF1 (4/125) and the rare RAF1 gene fusions (2/125) were mutually exclusive with BRAF rearrangements, with the exception of two cases in our series that concomitantly harbored more than one hit in the MAPK pathway. In summary, our findings further underline the fundamental role of RAF kinase fusion products as a tumor-specific marker and an ideally suited drug target for PA.

Journal ArticleDOI
TL;DR: The contributions that the various types of pathology are likely to make to the increasing neurological deficit in MS are reviewed.
Abstract: Multiple sclerosis is the major inflammatory condition affecting the central nervous system (CNS) and is characterised by disseminated focal immune-mediated demyelination. Demyelination is accompanied by variable axonal damage and loss and reactive gliosis. It is this pathology that is thought to be responsible for the clinical relapses that often respond well to immunomodulatory therapy. However, the later secondary progressive stage of MS remains largely refractory to treatment and it is widely suggested that accumulating axon loss is responsible for clinical progression. Although initially thought to be a white matter (WM) disease, it is increasingly apparent that extensive pathology is also seen in the grey matter (GM) throughout the CNS. GM pathology is characterised by demyelination in the relative absence of an immune cell infiltrate. Neuronal loss is also seen both in the GM lesions and in unaffected areas of the GM. The slow progressive nature of this later stage combined with the presence of extensive grey matter pathology has led to the suggestion that neurodegeneration might play an increasing role with increasing disease duration. However, there is a paucity of studies that have correlated the pathological features with clinical milestones during secondary progressive MS. Here, we review the contributions that the various types of pathology are likely to make to the increasing neurological deficit in MS.

Journal ArticleDOI
TL;DR: It is demonstrated that pediatric and adult Shh-medulloblastomas are clinically, transcriptionally, genetically, and prognostically distinct.
Abstract: Recent integrative genomic approaches have defined molecular subgroups of medulloblastoma that are genetically and clinically distinct. Sonic hedgehog (Shh) medulloblastomas account for one-third of all cases and comprise the majority of infant and adult medulloblastomas. To discern molecular heterogeneity among Shh-medulloblastomas, we analyzed transcriptional profiles from four independent Shh-medulloblastoma expression datasets (n = 66). Unsupervised clustering analyses demonstrated a clear distinction between infant and adult Shh-medulloblastomas, which was reliably replicated across datasets. Comparison of transcriptomes from infant and adult Shh-medulloblastomas revealed deregulation of multiple gene families, including genes implicated in cellular development, synaptogenesis, and extracellular matrix maintenance. Furthermore, metastatic dissemination is a marker of poor prognosis in adult, but not in pediatric Shh-medulloblastomas. Children with desmoplastic Shh-medulloblastomas have a better prognosis than those with Shh-medulloblastomas and classic histology. Desmoplasia is not prognostic for adult Shh-medulloblastoma. Cytogenetic analysis of a large, non-overlapping cohort of Shh-medulloblastomas (n = 151) revealed significant over-representation of chromosome 10q deletion (P < 0.001) and MYCN amplification (P < 0.05) in pediatric Shh cases compared with adults. Adult Shh-medulloblastomas harboring chromosome 10q deletion, 2 gain, 17p deletion, 17q gain, and/or GLI2 amplification have a much worse prognosis as compared to pediatric cases exhibiting the same aberrations. Collectively, our data demonstrate that pediatric and adult Shh-medulloblastomas are clinically, transcriptionally, genetically, and prognostically distinct.

Journal ArticleDOI
TL;DR: Disclosure of pericytes’ role in the pathophysiology of CNS diseases may yield exciting developments and novel treatments as well as lead to new treatments.
Abstract: Pericytes are located at periphery of the microvessel wall and wrap it with their processes. They communicate with other cells of the neurovascular unit by direct contact or through signaling pathways and regulate several important microcirculatory functions. These include development and maintenance of the blood–brain barrier (BBB), distribution of the capillary blood flow to match the local metabolic need of the nearby cells, and angiogenesis. Pericytes also exhibit phagocytic activity and may function as pluripotent stem cells. Increasing evidence suggests a role for pericytes in a wide range of CNS diseases. They appear to be vulnerable to oxygen and nitrogen radical toxicity and have been shown to contract during cerebral ischemia and remain contracted despite reopening of the occluded artery. This causes impaired re-flow and may diminish the benefit of re-canalization therapies in stroke patients. Hyperglycemia-induced dysfunction of the signaling pathways between pericytes and endothelia is thought to play an important role in diabetic retinopathy, a common cause of blindness. Amyloid deposits detected within degenerating pericytes in the brains of patients with Alzheimer’s disease suggest that pericyte dysfunction may play a role in cerebral hypoperfusion and impaired amyloid β-peptide clearance in Alzheimer’s disease. This exciting possibility may reveal a novel temporal sequence of events in chronic neurodegeneration, in which microvascular dysfunction due to pericyte degeneration initiates secondary neurodegenerative changes. Identification of molecular mechanisms by which pericytes regulate BBB integrity in inflammatory conditions as well as in vasogenic brain edema may lead to new treatments. Pericytes may also take part in tissue repair and vascularization after CNS injury. In conclusion, although the evidence is just emerging and mostly preliminary, disclosing pericytes’ role in the pathophysiology of CNS diseases may yield exciting developments and novel treatments.

Journal ArticleDOI
TL;DR: A longitudinal study of complementary measures of Aβ pathology (PIB, CSF and plasma Aβ) and other biomarkers in a cohort with an extensive neuropsychological battery is significant because it shows that Aβ measurements have limited value for disease classification and modest value as prognostic factors over the 3-year follow-up as mentioned in this paper.
Abstract: Previous studies of Aβ plasma as a biomarker for Alzheimer’s disease (AD) obtained conflicting results We here included 715 subjects with baseline Aβ1-40 and Aβ1-42 plasma measurement (50% with 4 serial annual measurements): 205 cognitively normal controls (CN), 348 patients mild cognitive impairment (MCI) and 162 with AD We assessed the factors that modified their concentrations and correlated these values with PIB PET, MRI and tau and Aβ1-42 measures in cerebrospinal fluid (CSF) Association between Aβ and diagnosis (baseline and prospective) was assessed A number of health conditions were associated with altered concentrations of plasma Aβ The effect of age differed according to AD stage Plasma Aβ1-42 showed mild correlation with other biomarkers of Aβ pathology and were associated with infarctions in MRI Longitudinal measurements of Aβ1-40 and Aβ1-42 plasma levels showed modest value as a prognostic factor for clinical progression Our longitudinal study of complementary measures of Aβ pathology (PIB, CSF and plasma Aβ) and other biomarkers in a cohort with an extensive neuropsychological battery is significant because it shows that plasma Aβ measurements have limited value for disease classification and modest value as prognostic factors over the 3-year follow-up However, with longer follow-up, within subject plasma Aβ measurements could be used as a simple and minimally invasive screen to identify those at increased risk for AD Our study emphasizes the need for a better understanding of the biology and dynamics of plasma Aβ as well as the need for longer term studies to determine the clinical utility of measuring plasma Aβ

Journal ArticleDOI
TL;DR: Substantial peroxisome-related alterations in AD may contribute to the progression of AD pathology, and the decrease in plasmalogens and the increase in VLCFA andperoxisomal volume density in neuronal somata all showed a stronger association with NFT than with neuritic plaques.
Abstract: In Alzheimer’s disease (AD), lipid alterations are present early during disease progression. As some of these alterations point towards a peroxisomal dysfunction, we investigated peroxisomes in human postmortem brains obtained from the cohort-based, longitudinal Vienna-Transdanube Aging (VITA) study. Based on the neuropathological Braak staging for AD on one hemisphere, the patients were grouped into three cohorts of increasing severity (stages I–II, III–IV, and V–VI, respectively). Lipid analyses of cortical regions from the other hemisphere revealed accumulation of C22:0 and very long-chain fatty acids (VLCFA, C24:0 and C26:0), all substrates for peroxisomal β-oxidation, in cases with stages V–VI pathology compared with those modestly affected (stages I–II). Conversely, the level of plasmalogens, which need intact peroxisomes for their biosynthesis, was decreased in severely affected tissues, in agreement with a peroxisomal dysfunction. In addition, the peroxisomal volume density was increased in the soma of neurons in gyrus frontalis at advanced AD stages. Confocal laser microscopy demonstrated a loss of peroxisomes in neuronal processes with abnormally phosphorylated tau protein, implicating impaired trafficking as the cause of altered peroxisomal distribution. Besides the original Braak staging, the study design allowed a direct correlation between the biochemical findings and the amount of neurofibrillary tangles (NFT) and neuritic plaques, quantified in adjacent tissue sections. Interestingly, the decrease in plasmalogens and the increase in VLCFA and peroxisomal volume density in neuronal somata all showed a stronger association with NFT than with neuritic plaques. These results indicate substantial peroxisome-related alterations in AD, which may contribute to the progression of AD pathology.

Journal ArticleDOI
TL;DR: It is shown that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs), suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice.
Abstract: Cerebrovascular lesions related to congophilic amyloid angiopathy (CAA) often accompany deposition of β-amyloid (Aβ) in Alzheimer’s disease (AD), leading to disturbed cerebral blood flow and cognitive dysfunction, posing the question how cerebrovascular pathology contributes to the pathology of AD. To address this question, we characterised the morphology, biochemistry and functionality of brain blood vessels in transgenic arctic β-amyloid (arcAβ) mice expressing human amyloid precursor protein (APP) with both the familial AD-causing Swedish and Arctic mutations; these mice are characterised by strong CAA pathology. Mice were analysed at early, mid and late-stage pathology. Expression of the glucose transporter GLUT1 at the blood–brain barrier (BBB) was significantly decreased and paralleled by impaired in vivo blood-to-brain glucose transport and reduced cerebral lactate release during neuronal activation from mid-stage pathology onwards. Reductions in astrocytic GLUT1 and lactate transporters, as well as retraction of astrocyte endfeet and swelling consistent with neurovascular uncoupling, preceded wide-spread β-amyloid plaque pathology. We show that CAA at later disease stages is accompanied by severe morphological alterations of brain blood vessels including stenoses, BBB leakages and the loss of vascular smooth muscle cells (SMCs). Together, our data establish that cerebrovascular and astrocytic pathology are paralleled by impaired cerebral metabolism in arcAβ mice, and that astrocyte alterations occur already at premature stages of pathology, suggesting that astrocyte dysfunction can contribute to early behavioural and cognitive impairments seen in these mice.

Journal ArticleDOI
TL;DR: A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase the understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders.
Abstract: The endoneurial microenvironment, delimited by the endothelium of endoneurial vessels and a multi-layered ensheathing perineurium, is a specialized milieu interieur within which axons, associated Schwann cells and other resident cells of peripheral nerves function. The endothelium and perineurium restricts as well as regulates exchange of material between the endoneurial microenvironment and the surrounding extracellular space and thus is more appropriately described as a blood–nerve interface (BNI) rather than a blood–nerve barrier (BNB). Input to and output from the endoneurial microenvironment occurs via blood–nerve exchange and convective endoneurial fluid flow driven by a proximo-distal hydrostatic pressure gradient. The independent regulation of the endothelial and perineurial components of the BNI during development, aging and in response to trauma is consistent with homeostatic regulation of the endoneurial microenvironment. Pathophysiological alterations of the endoneurium in experimental allergic neuritis (EAN), and diabetic and lead neuropathy are considered to be perturbations of endoneurial homeostasis. The interactions of Schwann cells, axons, macrophages, and mast cells via cell–cell and cell–matrix signaling regulate the permeability of this interface. A greater knowledge of the dynamic nature of tight junctions and the factors that induce and/or modulate these key elements of the BNI will increase our understanding of peripheral nerve disorders as well as stimulate the development of therapeutic strategies to treat these disorders.

Journal ArticleDOI
TL;DR: The results suggest that misfolded SOD1 present in glial and motoneuron nuclei may generally be involved in ALS pathogenesis.
Abstract: The most common cause of amyotrophic lateral sclerosis (ALS) is mutations in superoxide dismutase-1 (SOD1). Since there is evidence for the involvement of non-neuronal cells in ALS, we searched for signs of SOD1 abnormalities focusing on glia. Spinal cords from nine ALS patients carrying SOD1 mutations, 51 patients with sporadic or familial ALS who lacked such mutations, and 46 controls were examined by immunohistochemistry. A set of anti-peptide antibodies with specificity for misfolded SOD1 species was used. Misfolded SOD1 in the form of granular aggregates was regularly detected in the nuclei of ventral horn astrocytes, microglia, and oligodendrocytes in ALS patients carrying or lacking SOD1 mutations. There was negligible staining in neurodegenerative and non-neurological controls. Misfolded SOD1 appeared occasionally also in nuclei of motoneurons of ALS patients. The results suggest that misfolded SOD1 present in glial and motoneuron nuclei may generally be involved in ALS pathogenesis.

Journal ArticleDOI
TL;DR: A critical analysis of the role of glia in α-synucleinopathies including putative mechanisms promoting a chronically diseased glial microenvironment which can lead to detrimental neuronal changes, including cell loss is provided.
Abstract: Parkinson’s disease (PD), dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) are adult onset neurodegenerative disorders characterised by prominent intracellular α-synuclein aggregates (α-synucleinopathies). The glial contribution to neurodegeneration in α-synucleinopathies was largely underestimated until recently. However, brains of PD and DLB patients exhibit not only neuronal inclusions such as Lewy bodies or Lewy neurites but also glial α-synuclein aggregates. Accumulating experimental evidence in PD models suggests that astrogliosis and microgliosis act as important mediators of neurodegeneration playing a pivotal role in both disease initiation and progression. In MSA, oligodendrocytes are intriguingly affected by aberrant cytoplasmic accumulation of α-synuclein (glial cytoplasmic inclusions, Papp-Lantos bodies). Converging evidence from human postmortem studies and transgenic MSA models suggests that oligodendroglial dysfunction both triggers and exacerbates neuronal degeneration. This review summarises the wide range of responsibilities of astroglia, microglia and oligodendroglia in the healthy brain and the changes in glial function associated with ageing. We then provide a critical analysis of the role of glia in α-synucleinopathies including putative mechanisms promoting a chronically diseased glial microenvironment which can lead to detrimental neuronal changes, including cell loss. Finally, major therapeutic strategies targeting glial pathology in α-synucleinopathies as well as current pitfalls for disease-modification in clinical trials are discussed.

Journal ArticleDOI
TL;DR: The emergence of TDP-proteinopathy represents a final common pathology associated with changes in multiple genes and opens the possibility of research by triangulation towards key common upstream molecular events, delivering final proof of the hypothesis that ALS and most FTD cases are disorders within a common pathology expressed as a clinico-anatomical spectrum.
Abstract: Research into amyotrophic lateral sclerosis (ALS) has been stimulated by a series of genetic and molecular pathology discoveries. The hallmark neuronal cytoplasmic inclusions of sporadic ALS (sALS) predominantly comprise a nuclear RNA processing protein, TDP-43 encoded by the gene TARDBP, a discovery that emerged from high throughput analysis of human brain tissue from patients with frontotemporal dementia (FTD) who share a common molecular pathology with ALS. The link between RNA processing and ALS was further strengthened by the discovery that another genetic locus linking familial ALS (fALS) and FTD was due to mutation of the fused in sarcoma (FUS) gene. Of potentially even greater importance it emerges that TDP-43 accumulation and inclusion formation characterises not only most sALS cases but also those that arise from mutations in several genes including TARDBP (predominantly ALS cases) itself, C9ORF72 (ALS and FTD cases), progranulin (predominantly FTD phenotypes), VAPB (predominantly ALS cases) and in some ALS cases with rare genetic variants of uncertain pathogenicity (CHMP2B). “TDP-proteinopathy” therefore now represents a final common pathology associated with changes in multiple genes and opens the possibility of research by triangulation towards key common upstream molecular events. It also delivers final proof of the hypothesis that ALS and most FTD cases are disorders within a common pathology expressed as a clinico-anatomical spectrum. The emergence of TDP-proteinopathy also confirms the view that glial pathology is a crucial facet in this class of neurodegeneration, adding to the established view of non-nerve cell autonomous degeneration of the motor system from previous research on SOD1 fALS. Future research into the mechanisms of TDP-43 and FUS-related neurodegeneration, taking into account the major component of glial pathology now revealed in those disorders will significantly accelerate new discoveries in this field, including target identification for new therapy.

Journal ArticleDOI
TL;DR: Comparison with the neuropathology of cases of frontotemporal lobar degeneration with FUS-ir pathology showed significant differences and suggests that FUS mutations are associated with a distinct pathobiology.
Abstract: Mutations in the gene encoding the fused in sarcoma (FUS) protein are responsible for ~3% of familial amyotrophic lateral sclerosis (ALS) and <1% of sporadic ALS (ALS-FUS). Descriptions of the associated neuropathology are few and largely restricted to individual case reports. To better define the neuropathology associated with FUS mutations, we have undertaken a detailed comparative analysis of six cases of ALS-FUS that include sporadic and familial cases, with both juvenile and adult onset, and with four different FUS mutations. We found significant pathological heterogeneity among our cases, with two distinct patterns that correlated with the disease severity and the specific mutation. Frequent basophilic inclusions and round FUS-immunoreactive (FUS-ir) neuronal cytoplasmic inclusions (NCI) were a consistent feature of our early-onset cases, including two with the p.P525L mutation. In contrast, our late-onset cases that included two with the p.R521C mutation had tangle-like NCI and numerous FUS-ir glial cytoplasmic inclusions. Double-labeling experiments demonstrated that many of the glial inclusions were in oligodendrocytes. Comparison with the neuropathology of cases of frontotemporal lobar degeneration with FUS-ir pathology showed significant differences and suggests that FUS mutations are associated with a distinct pathobiology.

Journal ArticleDOI
TL;DR: Evidence is provided for deregulation of the TLR pathway in the pathogenesis of PCNSL through mutation of the myeloid differentiation primary response gene 88 (MYD88), which results in the constitutive activation of the CARD11 protein.
Abstract: Primary central nervous system lymphoma (PCNSL) is a special lymphoma entity. Although being a rare disease, the incidence of PCNSL has significantly raised in the last decades [3, 4], however, a specific standard therapeutic regimen is still a matter of debate [2]. Despite the fact that PCNSL histopathologically resemble diffuse large B cell lymphoma (DLBCL) [3, 4], they are characterized by unique clinical and molecular features [6], including their exclusive manifestation in the unique microenvironment of the immunologically privileged CNS. Activation of the nuclear factor jB (NF-jB) pathway is a hallmark of PCNSL [1, 5]. Various mechanisms of NF-jB activation have been identified in PCNSL. These include gains in chromosome 18q21 being present in 37% of PCNSL and activating mutations of the CARD11 gene being present in 16% of PCNSL [5, 6]. Moreover, NF-jB activation might be triggered by stimulation of either the B cell receptor pathway, the tumor necrosis factor or the toll-like receptor (TLR) pathway. Here, we provide evidence for deregulation of the TLR pathway in the pathogenesis of PCNSL through mutation of the myeloid differentiation primary response gene 88 (MYD88). Analysis of the MYD88 gene, the central integrator of the TLR pathway, in a series of 14 PCNSL by a biphased PCR approach followed by sequencing of all the exons revealed mutations in seven (50%) of the tumors (for details see supplementary information). Interestingly, in five of these seven (71%) PCNSL, i.e. 36% of all tumors analyzed, mutations were identified as a leucine to proline exchange at position 265 (L265P), which is an oncogenically activating mutation and has recently been shown to be of somatic origin [7]. In the remaining two PCNSL, MYD88 mutations resided at positions 103 and 143, respectively. In one tumor a nucleotide exchange corresponded to a silent mutation (L103L). In the other PCNSL the mutation resulted in an amino acid exchange (Q143E), which has not been reported before and the functional impact of which remains to be elucidated. Till date, MYD88 mutations have been described only in 9% of gastric mucosa-associated lymphoid tissue lymphoma, in 3% of chronic lymphocytic leukemia, in 5% of Burkitt’s lymphoma, and in systemic DLBCL, affecting 39% of the activated B cell like (ABC)-DLBCL subtype and 6% of the germinal center B cell like subgroup, respectively [7, 8]. Interestingly, 29% of systemic ABCDLBCL harbored the MYD88 L265P mutation [7]. Two of the five PCNSL (40%) with the recurrent MYD88 L265P mutation concomitantly harbored a CARD11 mutation, which results in the constitutive activation of the CARD11 protein [5]. While either the MYD88 L265P or the CARD11 mutation activates the NF-jB pathway, the combined presence of these mutations may act synergistically; thus, further enhancing NFjB activation [1, 5]. In addition to a direct effect on the NF-jB pathway, MYD88 mutations may alter the Electronic supplementary material The online version of this article (doi:10.1007/s00401-011-0891-2) contains supplementary material, which is available to authorized users.

Journal ArticleDOI
TL;DR: The findings support the notion that either Aβ or tau can induce reduction of PSD-95 in excitatory synapses in hippocampus, and may mark postsynaptic degeneration that underlies long-term functional deficits in Alzheimer's disease.
Abstract: Impairment of synaptic plasticity underlies memory dysfunction in Alzheimer’s disease (AD). Molecules involved in this plasticity such as PSD-95, a major scaffold protein at excitatory synapses, may play an important role in AD pathogenesis. We examined the distribution of PSD-95 in transgenic mice of amyloidopathy (5XFAD) and tauopathy (JNPL3) as well as in AD brains using double-labeling immunofluorescence and confocal microscopy. In wild type control mice, PSD-95 primarily labeled neuropil with distinct distribution in hippocampal apical dendrites. In 3 month-old 5XFAD mice, PSD-95 distribution was similar to that of wild type mice despite significant Aβ deposition. However, in 6 month-old 5XFAD mice, PSD-95 immunoreactivity in apical dendrites markedly decreased and prominent immunoreactivity was noted in neuronal soma in CA1 neurons. Similarly, PSD-95 immunoreactivity disappeared from apical dendrites and accumulated in neuronal soma in 14, but not 3, month-old JNPL3 mice. In AD brains, PSD-95 accumulated in Hirano bodies in hippocampal neurons. Our findings support the notion that either Aβ or tau can induce reduction of PSD-95 in excitatory synapses in hippocampus. Furthermore, this PSD-95 reduction is not an early event but occurs as the pathologies advance. Thus, the time-dependent PSD-95 reduction from synapses and accumulation in neuronal soma in transgenic mice and Hirano bodies in AD may mark postsynaptic degeneration that underlies long-term functional deficits.