scispace - formally typeset
Search or ask a question

Showing papers in "Biochemical Journal in 2014"


Journal ArticleDOI
TL;DR: It is proposed that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitins could hold promise as novel therapies for Parkinson's disease.
Abstract: We have previously reported that the Parkinson's disease-associated kinase PINK1 (PTEN-induced putative kinase 1) is activated by mitochondrial depolarization and stimulates the Parkin E3 ligase by phosphorylating Ser65 within its Ubl (ubiquitin-like) domain. Using phosphoproteomic analysis, we identified a novel ubiquitin phosphopeptide phosphorylated at Ser65 that was enriched 14-fold in HEK (human embryonic kidney)-293 cells overexpressing wild-type PINK1 stimulated with the mitochondrial uncoupling agent CCCP (carbonyl cyanide m-chlorophenylhydrazone), to activate PINK1, compared with cells expressing kinase-inactive PINK1. Ser65 in ubiquitin lies in a similar motif to Ser65 in the Ubl domain of Parkin. Remarkably, PINK1 directly phosphorylates Ser65 of ubiquitin in vitro. We undertook a series of experiments that provide striking evidence that Ser65-phosphorylated ubiquitin (ubiquitinPhospho−Ser65) functions as a critical activator of Parkin. First, we demonstrate that a fragment of Parkin lacking the Ubl domain encompassing Ser65 (ΔUbl-Parkin) is robustly activated by ubiquitinPhospho−Ser65, but not by non-phosphorylated ubiquitin. Secondly, we find that the isolated Parkin Ubl domain phosphorylated at Ser65 (UblPhospho−Ser65) can also activate ΔUbl-Parkin similarly to ubiquitinPhospho−Ser65. Thirdly, we establish that ubiquitinPhospho−Ser65, but not non-phosphorylated ubiquitin or UblPhospho−Ser65, activates full-length wild-type Parkin as well as the non-phosphorylatable S65A Parkin mutant. Fourthly, we provide evidence that optimal activation of full-length Parkin E3 ligase is dependent on PINK1-mediated phosphorylation of both Parkin at Ser65 and ubiquitin at Ser65, since only mutation of both proteins at Ser65 completely abolishes Parkin activation. In conclusion, the findings of the present study reveal that PINK1 controls Parkin E3 ligase activity not only by phosphorylating Parkin at Ser65, but also by phosphorylating ubiquitin at Ser65. We propose that phosphorylation of Parkin at Ser65 serves to prime the E3 ligase enzyme for activation by ubiquitinPhospho−Ser65, suggesting that small molecules that mimic ubiquitinPhospho−Ser65 could hold promise as novel therapies for Parkinson's disease.

654 citations


Journal ArticleDOI
TL;DR: It is reported that biguanides inhibit complex I by inhibiting ubiquinone reduction (but not competitively) and, independently, stimulate reactive oxygen species production by the complex I flavin and are identified as a new class of complex I and ATP synthase inhibitor.
Abstract: The biguanide metformin is widely prescribed for Type II diabetes and has anti-neoplastic activity in laboratory models. Despite evidence that inhibition of mitochondrial respiratory complex I by metformin is the primary cause of its cell-lineage-specific actions and therapeutic effects, the molecular interaction(s) between metformin and complex I remain uncharacterized. In the present paper, we describe the effects of five pharmacologically relevant biguanides on oxidative phosphorylation in mammalian mitochondria. We report that biguanides inhibit complex I by inhibiting ubiquinone reduction (but not competitively) and, independently, stimulate reactive oxygen species production by the complex I flavin. Biguanides also inhibit mitochondrial ATP synthase, and two of them inhibit only ATP hydrolysis, not synthesis. Thus we identify biguanides as a new class of complex I and ATP synthase inhibitor. By comparing biguanide effects on isolated complex I and cultured cells, we distinguish three anti-diabetic and potentially anti-neoplastic biguanides (metformin, buformin and phenformin) from two anti-malarial biguanides (cycloguanil and proguanil): the former are accumulated into mammalian mitochondria and affect oxidative phosphorylation, whereas the latter are excluded so act only on the parasite. Our mechanistic and pharmacokinetic insights are relevant to understanding and developing the role of biguanides in new and existing therapeutic applications, including cancer, diabetes and malaria.

513 citations


Journal ArticleDOI
TL;DR: The thermal-shift assay is proposed to be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.
Abstract: Protein kinase-like domains that lack conserved residues known to catalyse phosphoryl transfer, termed pseudokinases, have emerged as important signalling domains across all kingdoms of life. Although predicted to function principally as catalysis-independent protein-interaction modules, several pseudokinase domains have been attributed unexpected catalytic functions, often amid controversy. We established a thermal-shift assay as a benchmark technique to define the nucleotide-binding properties of kinase-like domains. Unlike in vitro kinase assays, this assay is insensitive to the presence of minor quantities of contaminating kinases that may otherwise lead to incorrect attribution of catalytic functions to pseudokinases. We demonstrated the utility of this method by classifying 31 diverse pseudokinase domains into four groups: devoid of detectable nucleotide or cation binding; cation-independent nucleotide binding; cation binding; and nucleotide binding enhanced by cations. Whereas nine pseudokinases bound ATP in a divalent cation-dependent manner, over half of those examined did not detectably bind nucleotides, illustrating that pseudokinase domains predominantly function as non-catalytic protein-interaction modules within signalling networks and that only a small subset is potentially catalytically active. We propose that henceforth the thermal-shift assay be adopted as the standard technique for establishing the nucleotide-binding and catalytic potential of kinase-like domains.

241 citations


Journal ArticleDOI
TL;DR: The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors, and the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases is reviewed.
Abstract: The JAK (Janus kinase) family members serve essential roles as the intracellular signalling effectors of cytokine receptors. This family, comprising JAK1, JAK2, JAK3 and TYK2 (tyrosine kinase 2), was first described more than 20 years ago, but the complexities underlying their activation, regulation and pleiotropic signalling functions are still being explored. Here, we review the current knowledge of their physiological functions and the causative role of activating and inactivating JAK mutations in human diseases, including haemopoietic malignancies, immunodeficiency and inflammatory diseases. At the molecular level, recent studies have greatly advanced our knowledge of the structures and organization of the component FERM (4.1/ezrin/radixin/moesin)-SH2 (Src homology 2), pseudokinase and kinase domains within the JAKs, the mechanism of JAK activation and, in particular, the role of the pseudokinase domain as a suppressor of the adjacent tyrosine kinase domain's catalytic activity. We also review recent advances in our understanding of the mechanisms of negative regulation exerted by the SH2 domain-containing proteins, SOCS (suppressors of cytokine signalling) proteins and LNK. These recent studies highlight the diversity of regulatory mechanisms utilized by the JAK family to maintain signalling fidelity, and suggest alternative therapeutic strategies to complement existing ATP-competitive kinase inhibitors. Abbreviations: ALL, acute lymphoblastic leukaemia; AML, acute myeloid leukaemia; APS, adapter protein with PH and Src homology 2 domains; E, embryonic day; EPO, erythropoietin; EPOR, EPO receptor; ER, endoplasmic reticulum; FERM, 4.1/ezrin/radixin/moesin; G-CSF, granulocyte colony-stimulating factor; GHR, growth hormone receptor; HSC, haemopoietic stem cell; IFN, interferon; IFNAR, IFNα receptor; IL, interleukin; JAK, Janus kinase; JH, Jak homology; JMML, juvenile myelomonocytic leukaemia; KIR, kinase inhibitory region; MPN, myeloproliferative neoplasm; PH, pleckstrin homology; PN, postnatal day; PTP1B, protein tyrosine phosphatase 1B; PTPN, protein tyrosine phosphatase, non-receptor; PV, polycythaemia vera; SCID, severe combined immunodeficiency disease; SH2, Src homology 2; SHP, Src homology 2 domain-containing protein tyrosine phosphatase; SOCS, suppressor of cytokine signalling; STAT, signal transducer and activator of transcription; TCPTP, T-cell protein tyrosine phosphatase; TPO, thrombopoietin; TYK2, tyrosine kinase 2

236 citations


Journal ArticleDOI
TL;DR: How three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into the understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology is discussed.
Abstract: The RBR (RING-BetweenRING-RING) or TRIAD [two RING fingers and a DRIL (double RING finger linked)] E3 ubiquitin ligases comprise a group of 12 complex multidomain enzymes. This unique family of E3 ligases includes parkin, whose dysfunction is linked to the pathogenesis of early-onset Parkinson's disease, and HOIP (HOIL-1-interacting protein) and HOIL-1 (haem-oxidized IRP2 ubiquitin ligase 1), members of the LUBAC (linear ubiquitin chain assembly complex). The RBR E3 ligases share common features with both the larger RING and HECT (homologous with E6-associated protein C-terminus) E3 ligase families, directly catalysing ubiquitin transfer from an intrinsic catalytic cysteine housed in the C-terminal domain, as well as recruiting thioester-bound E2 enzymes via a RING domain. Recent three-dimensional structures and biochemical findings of the RBRs have revealed novel protein domain folds not previously envisioned and some surprising modes of regulation that have raised many questions. This has required renaming two of the domains in the RBR E3 ligases to more accurately reflect their structures and functions: the C-terminal Rcat (required-for-catalysis) domain, essential for catalytic activity, and a central BRcat (benign-catalytic) domain that adopts the same fold as the Rcat, but lacks a catalytic cysteine residue and ubiquitination activity. The present review discusses how three-dimensional structures of RBR (RING1-BRcat-Rcat) E3 ligases have provided new insights into our understanding of the biochemical mechanisms of these important enzymes in ubiquitin biology.

226 citations


Journal ArticleDOI
TL;DR: A highly selective and potent inhibitor of Vps34, termed VPS34-IN1, is described that inhibits Vps 34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks.
Abstract: The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50–60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80–90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.

222 citations


Journal ArticleDOI
TL;DR: The mitochondrial oxidation of long-chain and short-chain fatty acids is depressed in the absence of NRF2 and accelerated when Nrf2 is constitutively active, which has implications for chronic disease conditions including cancer, metabolic syndrome and neurodegeneration.
Abstract: Transcription factor Nrf2 (NF-E2 p45-related factor 2) regulates the cellular redox homoeostasis and cytoprotective responses, allowing adaptation and survival under conditions of stress. The significance of Nrf2 in intermediary metabolism is also beginning to be recognized. Thus this transcription factor negatively affects fatty acid synthesis. However, the effect of Nrf2 on fatty acid oxidation is currently unknown. In the present paper, we report that the mitochondrial oxidation of long-chain (palmitic) and short-chain (hexanoic) fatty acids is depressed in the absence of Nrf2 and accelerated when Nrf2 is constitutively active. Addition of fatty acids stimulates respiration in heart and liver mitochondria isolated from wild-type mice. This effect is significantly weaker when Nrf2 is deleted, whereas it is stronger when Nrf2 activity is constitutively high. In the absence of glucose, addition of fatty acids differentially affects the production of ATP in mouse embryonic fibroblasts from wild-type, Nrf2-knockout and Keap1 (Kelch-like ECH-associated protein 1)-knockout mice. In acute tissue slices, the rate of regeneration of FADH2 is reduced when Nrf2 is absent. This metabolic role of Nrf2 on fatty acid oxidation has implications for chronic disease conditions including cancer, metabolic syndrome and neurodegeneration.

180 citations


Journal ArticleDOI
TL;DR: A previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)–AMPK pathway, which would otherwise inhibit cell growth and proliferation.
Abstract: The insulin/IGF-1 (insulin-like growth factor 1)-activated protein kinase Akt (also known as protein kinase B) phosphorylates Ser487 in the ‘ST loop’ (serine/threonine-rich loop) within the C-terminal domain of AMPK-α1 (AMP-activated protein kinase-α1), leading to inhibition of phosphorylation by upstream kinases at the activating site, Thr172. Surprisingly, the equivalent site on AMPK-α2, Ser491, is not an Akt target and is modified instead by autophosphorylation. Stimulation of HEK (human embryonic kidney)-293 cells with IGF-1 caused reduced subsequent Thr172 phosphorylation and activation of AMPK-α1 in response to the activator A769662 and the Ca2+ ionophore A23187, effects we show to be dependent on Akt activation and Ser487 phosphorylation. Consistent with this, in three PTEN (phosphatase and tensin homologue deleted on chromosome 10)-null tumour cell lines (in which the lipid phosphatase PTEN that normally restrains the Akt pathway is absent and Akt is thus hyperactivated), AMPK was resistant to activation by A769662. However, full AMPK activation could be restored by pharmacological inhibition of Akt, or by re-expression of active PTEN. We also show that inhibition of Thr172 phosphorylation is due to interaction of the phosphorylated ST loop with basic side chains within the αC-helix of the kinase domain. Our findings reveal that a previously unrecognized effect of hyperactivation of Akt in tumour cells is to restrain activation of the LKB1 (liver kinase B1)–AMPK pathway, which would otherwise inhibit cell growth and proliferation.

176 citations


Journal ArticleDOI
TL;DR: The targeting of WNK–SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl− extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.
Abstract: Precise homoeostasis of the intracellular concentration of Cl− is achieved via the co-ordinated activities of the Cl− influx and efflux. We demonstrate that the WNK (WNK lysine-deficient protein kinase)-activated SPAK (SPS1-related proline/alanine-rich kinase)/OSR1 (oxidative stress-responsive kinase 1) known to directly phosphorylate and stimulate the N[K]CCs (Na+–K+ ion co-transporters), also promote inhibition of the KCCs (K+–Cl− co-transporters) by directly phosphorylating a recently described C-terminal threonine residue conserved in all KCC isoforms [Site-2 (Thr1048)]. First, we demonstrate that SPAK and OSR1, in the presence of the MO25 regulatory subunit, robustly phosphorylates all KCC isoforms at Site-2 in vitro. Secondly, STOCK1S-50699, a WNK pathway inhibitor, suppresses SPAK/OSR1 activation and KCC3A Site-2 phosphorylation with similar efficiency. Thirdly, in ES (embryonic stem) cells lacking SPAK/OSR1 activity, endogenous phosphorylation of KCC isoforms at Site-2 is abolished and these cells display elevated basal activity of 86Rb+ uptake that was not markedly stimulated further by hypotonic high K+ conditions, consistent with KCC3A activation. Fourthly, a tight correlation exists between SPAK/OSR1 activity and the magnitude of KCC3A Site-2 phosphorylation. Lastly, a Site-2 alanine KCC3A mutant preventing SPAK/OSR1 phosphorylation exhibits increased activity. We also observe that KCCs are directly phosphorylated by SPAK/OSR1, at a novel Site-3 (Thr5 in KCC1/KCC3 and Thr6 in KCC2/KCC4), and a previously recognized KCC3-specific residue, Site-4 (Ser96). These data demonstrate that the WNK-regulated SPAK/OSR1 kinases directly phosphorylate the N[K]CCs and KCCs, promoting their stimulation and inhibition respectively. Given these reciprocal actions with anticipated net effects of increasing Cl− influx, we propose that the targeting of WNK–SPAK/OSR1 with kinase inhibitors might be a novel potent strategy to enhance cellular Cl− extrusion, with potential implications for the therapeutic modulation of epithelial and neuronal ion transport in human disease states.

167 citations


Journal ArticleDOI
TL;DR: It is demonstrated that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.
Abstract: ABC (ATP-binding-cassette) transporters carry out many vital functions and are involved in numerous diseases, but study of the structure and function of these proteins is often hampered by their large size and membrane location. Membrane protein purification usually utilizes detergents to solubilize the protein from the membrane, effectively removing it from its native lipid environment. Subsequently, lipids have to be added back and detergent removed to reconstitute the protein into a lipid bilayer. In the present study, we present the application of a new methodology for the extraction and purification of ABC transporters without the use of detergent, instead, using a copolymer, SMA (polystyrene-co-maleic acid). SMA inserts into a bilayer and assembles into discrete particles, essentially solubilizing the membrane into small discs of bilayer encircled by a polymer, termed SMALPs (SMA lipid particles). We show that this polymer can extract several eukaryotic ABC transporters, P-glycoprotein (ABCB1), MRP1 (multidrug-resistance protein 1; ABCC1), MRP4 (ABCC4), ABCG2 and CFTR (cystic fibrosis transmembrane conductance regulator; ABCC7), from a range of different expression systems. The SMALP-encapsulated ABC transporters can be purified by affinity chromatography, and are able to bind ligands comparably with those in native membranes or detergent micelles. A greater degree of purity and enhanced stability is seen compared with detergent solubilization. The present study demonstrates that eukaryotic ABC transporters can be extracted and purified without ever being removed from their lipid bilayer environment, opening up a wide range of possibilities for the future study of their structure and function.

163 citations


Journal ArticleDOI
TL;DR: The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.
Abstract: The 7mG (7-methylguanosine cap) formed on mRNA is fundamental to eukaryotic gene expression. Protein complexes recruited to 7mG mediate key processing events throughout the lifetime of the transcript. One of the most important mediators of 7mG functions is CBC (cap-binding complex). CBC has a key role in several gene expression mechanisms, including transcription, splicing, transcript export and translation. Gene expression can be regulated by signalling pathways which influence CBC function. The aim of the present review is to discuss the mechanisms by which CBC mediates and co-ordinates multiple gene expression events.

Journal ArticleDOI
TL;DR: GCaMP-type low-affinity red fluorescent genetically encoded Ca2+ indicators for optical imaging engineered to have Kd values of 24 μM and 12 μM are reported, which can be used to image mitochondrial and ER Ca 2+ dynamics in several cell types.
Abstract: Ca2+ is a key intermediary in a variety of signalling pathways and undergoes dynamic changes in its cytoplasmic concentration due to release from stores within the endoplasmic reticulum (ER) and influx from the extracellular environment. In addition to regulating cytoplasmic Ca2+ signals, these responses also affect the concentration of Ca2+ within the ER and mitochondria. Single fluorescent protein-based Ca2+ indicators, such as the GCaMP series based on GFP, are powerful tools for imaging changes in the concentration of Ca2+ associated with intracellular signalling pathways. Most GCaMP-type indicators have dissociation constants (Kd) for Ca2+ in the high nanomolar to low micromolar range and are therefore optimal for measuring cytoplasmic [Ca2+], but poorly suited for use in mitochondria and ER where [Ca2+] can reach concentrations of several hundred micromolar. We now report GCaMP-type low-affinity red fluorescent genetically encoded Ca2+ indicators for optical imaging (LAR-GECO), engineered to have Kd values of 24 μM (LAR-GECO1) and 12 μM (LAR-GECO1.2). We demonstrate that these indicators can be used to image mitochondrial and ER Ca2+ dynamics in several cell types. In addition, we perform two-colour imaging of intracellular Ca2+ dynamics in cells expressing both cytoplasmic GCaMP and ER-targeted LAR-GECO1. The development of these low-affinity intensiometric red fluorescent Ca2+ indicators enables monitoring of ER and mitochondrial Ca2+ in combination with GFP-based reporters.

Journal ArticleDOI
TL;DR: It is shown that embryonic fibroblasts from the S133A-knockin mice show that Ser133 phosphorylation downstream of PKA is required for CBP/p300 recruitment, and MSK-mediated CREB phosphorylated is critical for the induction of CREB-dependent genes downstream of MAPK signalling.
Abstract: CREB (cAMP-response-element-binding protein) is an important transcription factor for the activation of a number of immediate early genes CREB is phosphorylated on Ser133 by PKA (protein kinase A), promoting the recruitment of the co-activator proteins CBP (CREB-binding protein) and p300; this has been proposed to increase the transcription of CREB-dependent genes CREB is also phosphorylated on Ser133 by MSK1/2 (mitogen- and stress-activated kinase 1/2) in cells in response to the activation of MAPK (mitogen-activated protein kinase) signalling; however, the relevance of this to gene transcription has been controversial To resolve this problem, we created a mouse with a Ser133 to alanine residue mutation in the endogenous Creb gene Unlike the total CREB knockout, which is perinatally lethal, these mice were viable, but born at less than the expected Mendelian frequency on a C57Bl/6 background Using embryonic fibroblasts from the S133A-knockin mice we show in the present study that Ser133 phosphorylation downstream of PKA is required for CBP/p300 recruitment The requirement of Ser133 phosphorylation for the PKA-mediated induction of CREB-dependent genes was, however, promoter-specific Furthermore, we show that in cells the phosphorylation of CREB on Ser133 by MSKs does not promote strong recruitment of CBP or p300 Despite this, MSK-mediated CREB phosphorylation is critical for the induction of CREB-dependent genes downstream of MAPK signalling

Journal ArticleDOI
TL;DR: The present review assesses the biochemical and channel features of pannexins focusing on the literature which links these unique molecules to over a dozen diseases and syndromes.
Abstract: In less than a decade, a small family of channel-forming glycoproteins, named pannexins, have captured the interest of many biologists, in large part due to their association with common diseases, ranging from cancers to neuropathies to infectious diseases. Although the pannexin family consists of only three members (Panx1, Panx2 and Panx3), one or more of these pannexins are expressed in virtually every mammalian organ, implicating their potential role in a diverse array of pathophysiologies. Panx1 is the most extensively studied, but features of this pannexin must be cautiously extrapolated to the other pannexins, as for example we now know that Panx2, unlike Panx1, exhibits unique properties such as a tendency to be retained within intracellular compartments. In the present review, we assess the biochemical and channel features of pannexins focusing on the literature which links these unique molecules to over a dozen diseases and syndromes. Although no germ-line mutations in genes encoding pannexins have been linked to any diseases, many cases have shown that high pannexin expression is associated with disease onset and/or progression. Disease may also occur, however, when pannexins are underexpressed, highlighting that pannexin expression must be exquisitely regulated. Finally, we discuss some of the most pressing questions and controversies in the pannexin field as the community seeks to uncover the full biological relevance of pannexins in healthy organs and during disease.

Journal ArticleDOI
TL;DR: A novel role for LL-37 in the formation of NETs is demonstrated and it is indicated that the NET induction is mediated by the hydrophobic character of the peptide.
Abstract: NETs (neutrophil extracellular traps) have been described as a fundamental innate immune defence mechanism. Duringformation of NETs, the nuclear membrane is disrupted by an asyet unknown mechanism. In the present study we investigated the role of human cathelicidin LL-37 in nuclear membrane disruption and formation of NETs. Immunofluorescence microscopy revealed that 5 μMLL-37 significantly facilitated NET formation by primary human blood-derived neutrophils alone, in the presence of the classical chemical NET inducer PMA or in the presence of Staphylococcus aureus. Parallel assays with a random LL-37 fragment library indicated that the NET induction is mediated by the hydrophobic character of the peptide. The translocalization of LL-37 towards the nucleus and the disruption of the nuclear membrane were visualized using confocal fluorescence microscopy. In conclusion, the present study demonstrates a novel role for LL-37 in the formation of NETs.

Journal ArticleDOI
TL;DR: The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleases to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology.
Abstract: Genome editing is the practice of making predetermined and precise changes to a genome by controlling the location of DNA DSBs (double-strand breaks) and manipulating the cell9s repair mechanisms. This technology results from harnessing natural processes that have taken decades and multiple lines of inquiry to understand. Through many false starts and iterative technology advances, the goal of genome editing is just now falling under the control of human hands as a routine and broadly applicable method. The present review attempts to define the technique and capture the discovery process while following its evolution from meganucleases and zinc finger nucleases to the current state of the art: TALEN (transcription-activator-like effector nuclease) technology. We also discuss factors that influence success, technical challenges and future prospects of this quickly evolving area of study and application.

Journal ArticleDOI
TL;DR: A short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of current knowledge of these pleiotropic enzymes, playing very distinct biological roles.
Abstract: The term ‘casein kinase’ has been widely used for decades to denote protein kinases sharing the ability to readily phosphorylate casein in vitro. These fall into three main classes: two of them, later renamed as protein kinases CK1 (casein kinase 1, also known as CKI) and CK2 (also known as CKII), are pleiotropic members of the kinome functionally unrelated to casein, whereas G-CK, or genuine casein kinase, responsible for the phosphorylation of casein in the Golgi apparatus of the lactating mammary gland, has only been identified recently with Fam20C [family with sequence similarity 20C; also known as DMP-4 (dentin matrix protein-4)], a member of the four-jointed family of atypical protein kinases, being responsible for the phosphorylation of many secreted proteins. In hindsight, therefore, the term ‘casein kinase’ is misleading in every instance; in the case of CK1 and CK2, it is because casein is not a physiological substrate, and in the case of G-CK/Fam20C/DMP-4, it is because casein is just one out of a plethora of its targets, and a rather marginal one at that. Strikingly, casein kinases altogether, albeit representing a minimal proportion of the whole kinome, appear to be responsible for the generation of up to 40–50% of non-redundant phosphosites currently retrieved in human phosphopeptides database. In the present review, a short historical explanation will be provided accounting for the usage of the same misnomer to denote three unrelated classes of protein kinases, together with an update of our current knowledge of these pleiotropic enzymes, sharing the same misnomer while playing very distinct biological roles.

Journal ArticleDOI
TL;DR: The crystal structure of the human MLKL pseudokinase domain is reported and nucleotide-binding mechanisms among pseudokinases and their mechanistic divergence from conventional catalytically active protein kinases are probed by performing structure-based mutagenesis.
Abstract: The pseudokinase MLKL (mixed lineage kinase domain-like) was identified recently as an essential checkpoint in the programmed necrosis or 'necroptosis' cell death pathway. In the present study, we report the crystal structure of the human MLKL pseudokinase domain at 1.7 A (1 A=0.1 nm) resolution and probe its nucleotide-binding mechanism by performing structure-based mutagenesis. By comparing the structures and nucleotide-binding determinants of human and mouse MLKL orthologues, the present study provides insights into the evolution of nucleotide-binding mechanisms among pseudokinases and their mechanistic divergence from conventional catalytically active protein kinases.

Journal ArticleDOI
TL;DR: The present study shows that two distinct functional pre-pores of Cry1Ab are formed after binding of the protoxin or the protease-activated toxin to the cadherin receptor, but before membrane insertion, which supports the pore-formation model involving sequential interaction with different midgut proteins, leading to pore formation in the target membrane.
Abstract: Cry proteins from Bacillus thuringiensis are insecticidal PFTs (pore-forming toxins). In the present study, we show that two distinct functional pre-pores of Cry1Ab are formed after binding of the protoxin or the protease-activated toxin to the cadherin receptor, but before membrane insertion. Both pre-pores actively induce pore formation, although with different characteristics, and contribute to the insecticidal activity. We also analysed the oligomerization of the mutant Cry1AbMod protein. This mutant kills different insect populations that are resistant to Cry toxins, but lost potency against susceptible insects. We found that the Cry1AbMod-protoxin efficiently induces oligomerization, but not the activated Cry1AbMod-toxin, explaining the loss of potency of Cry1AbMod against susceptible insects. These data are relevant for the future control of insects resistant to Cry proteins. Our data support the pore-formation model involving sequential interaction with different midgut proteins, leading to pore formation in the target membrane. We propose that not only different insect targets could have different receptors, but also different midgut proteases that would influence the rate of protoxin/toxin activation. It is possible that the two pre-pore structures could have been selected for in evolution, since they have differential roles in toxicity against selected targets, increasing their range of action. These data assign a functional role for the protoxin fragment of Cry PFTs that was not understood previously. Most PFTs produced by other bacteria are secreted as protoxins that require activation before oligomerization, to finally form a pore. Thus different pre-pores could be also part of the general mechanism of action of other PFTs.

Journal ArticleDOI
TL;DR: The wealth of the growing molecular information that defines the current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene is discussed.
Abstract: The WT1 (Wilms' tumour 1) gene encodes a zinc finger transcription factor and RNA-binding protein that direct the development of several organs and tissues. WT1 manifests both tumour suppressor and oncogenic activities, but the reasons behind these opposing functions are still not clear. As a transcriptional regulator, WT1 can either activate or repress numerous target genes resulting in disparate biological effects such as growth, differentiation and apoptosis. The complex nature of WT1 is exemplified by a plethora of isoforms, post-translational modifications and multiple binding partners. How WT1 achieves specificity to regulate a large number of target genes involved in diverse physiological processes is the focus of the present review. We discuss the wealth of the growing molecular information that defines our current understanding of the versatility and utility of WT1 as a master regulator of organ development, a tumour suppressor and an oncogene.

Journal ArticleDOI
TL;DR: The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.
Abstract: The neural crest is an embryonic stem cell population whose migratory behaviour has been likened to malignant invasion. The neural crest, as does cancer, undergoes an epithelial-to-mesenchymal transition and migrates to colonize almost all the tissues of the embryo. Neural crest cells exhibit collective cell migration, moving in streams of high directionality. The migratory neural crest streams are kept in shape by the presence of negative signals in their vicinity. The directionality of the migrating neural crest is achieved by contact-dependent cell polarization, in a phenomenon called contact inhibition of locomotion. Two cells experiencing contact inhibition of locomotion move away from each other after collision. However, if the cell density is high only cells exposed to a free edge can migrate away from the cluster leading to the directional migration of the whole group. Recent work performed in chicks, zebrafish and frogs has shown that the non-canonical Wnt-PCP (planar cell polarity) pathway plays a major role in neural crest migration. PCP signalling controls contact inhibition of locomotion between neural crest cells by localizing different PCP proteins at the site of cell contact during collision and locally regulating the activity of Rho GTPases. Upon collision RhoA (ras homologue family member A) is activated, whereas Rac1 is inhibited at the contact between two migrating neural crest cells, leading to the collapse of protrusions and the migration of cells away from one another. The present review summarizes the mechanisms that control neural crest migration and focuses on the role of non-canonical Wnt or PCP signalling in this process.

Journal ArticleDOI
TL;DR: It is suggested that PCBP2 can transfer ferrous iron from DMT1 to the appropriate intracellular sites or ferroportin and could function as an iron chaperone.
Abstract: DMT1 (divalent metal transporter 1) is the main iron importer found in animals, and ferrous iron is taken up by cells via DMT1. Once ferrous iron reaches the cytosol, it is subjected to subcellular distribution and delivered to various sites where iron is required for a variety of biochemical reactions in the cell. Until now, the mechanism connecting the transporter and cytosolic distribution had not been clarified. In the present study, we have identified PCBP2 [poly(rC)-binding protein 2] as a DMT1-binding protein. The N-terminal cytoplasmic region of DMT1 is the binding domain for PCBP2. An interaction between DMT1 and PCBP1, which is known to be a paralogue of PCBP2, could not be demonstrated in vivo or in vitro. Iron uptake and subsequent ferritin expression were suppressed by either DMT1 or PCBP2 knockdown. Iron-associated DMT1 could interact with PCBP2 in vitro, whereas iron-chelated DMT1 could not. These results indicate that ferrous iron imported by DMT1 is transferred directly to PCBP2. Moreover, we demonstrated that PCBP2 could bind to ferroportin, which exports ferrous iron out of the cell. These findings suggest that PCBP2 can transfer ferrous iron from DMT1 to the appropriate intracellular sites or ferroportin and could function as an iron chaperone.

Journal ArticleDOI
TL;DR: Lysine methylation is established as part of the normal tau post-translational modification signature in human brain, and it is suggested that it can function in part to protect against pathological tau aggregation.
Abstract: Poster Division: Biological Sciences: 1st Place (The Ohio State University Edward F. Hayes Graduate Research Forum)

Journal ArticleDOI
TL;DR: It is demonstrated that the activation of IKKβ induced by IL-1 (interleukin-1) or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, the TAK1 [TGFβ (transforming growth factor β)-activated kinase-1]-catalysed phosphorylated of Ser177 and, secondly,
Abstract: IKKβ {IκB [inhibitor of NF-κB (nuclear factor κB)] kinase β} is required to activate the transcription factor NF-κB, but how IKKβ itself is activated in vivo is still unclear. It was found to require phosphorylation by one or more ‘upstream’ protein kinases in some reports, but by autophosphorylation in others. In the present study, we resolve this contro-versy by demonstrating that the activation of IKKβ induced by IL-1 (interleukin-1) or TNF (tumour necrosis factor) in embryonic fibroblasts, or by ligands that activate Toll-like receptors in macrophages, requires two distinct phosphorylation events: first, the TAK1 [TGFβ (transforming growth factor β)-activated kinase-1]-catalysed phosphorylation of Ser177 and, secondly, the IKKβ-catalysed autophosphorylation of Ser181. The phosphorylation of Ser177 by TAK1 is a priming event required for the subsequent autophosphorylation of Ser181, which enables IKKβ to phosphorylate exogenous substrates. We also provide genetic evidence which indicates that the IL-1-stimulated, LUBAC (linear ubiquitin chain assembly complex)-catalysed formation of linear ubiquitin chains and their interaction with the NEMO (NF-κB essential modulator) component of the canonical IKK complex permits the TAK1-catalysed priming phosphorylation of IKKβ at Ser177 and IKKα at Ser176. These findings may be of general significance for the activation of other protein kinases.

Journal ArticleDOI
TL;DR: It is shown that Drp1 (dynamin-related protein 1), a primary mitochondrial fission protein, stabilizes the well-known stress gene p53 and is required for p53 translocation to the mitochondria under conditions of oxidative stress and proposed that a Drp 1 inhibitor such as P110 is a possible therapeutic agent for diseases in which hyperactivatedDrp1 contributes to the pathology.
Abstract: Oxidative-stress-induced necrosis is considered to be one of the main pathological mediators in various neurological disorders, such as brain ischaemia. However, little is known about the mechanism by which cells modulate necrosis in response to oxidative stress. In the present study, we showed that Drp1 (dynamin-related protein 1), a primary mitochondrial fission protein, stabilizes the well-known stress gene p53 and is required for p53 translocation to the mitochondria under conditions of oxidative stress. We found that Drp1 binding to p53 induced mitochondria-related necrosis. In contrast, inhibition of Drp1 hyperactivation by Drp1 siRNA reduced necrotic cell death in cell cultures exposed to oxidative stress. Most significantly, we demonstrated that inhibition of Drp1 by the Drp1 peptide inhibitor P110, which was developed recently by our group, abolished p53 association with the mitochondria and reduced brain infarction in rats subjected to brain ischaemia/reperfusion injury. Taken together, these findings reveal a novel mechanism of Drp1 hyperactivation in the induction of mitochondrial damage and subsequent cell death. We propose that a Drp1 inhibitor such as P110 is a possible therapeutic agent for diseases in which hyperactivated Drp1 contributes to the pathology.

Journal ArticleDOI
TL;DR: This article showed that mutations in SURF1 (surfeit locus protein 1) and COX (cytochrome c oxidase) assembly protein are associated with Leigh's syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality.
Abstract: Mutations in SURF1 (surfeit locus protein 1) COX (cytochrome c oxidase) assembly protein are associated with Leigh's syndrome, a human mitochondrial disorder that manifests as severe mitochondrial phenotypes and early lethality. In contrast, mice lacking the SURF1 protein ( Surf1 −/−) are viable and were previously shown to have enhanced longevity and a greater than 50% reduction in COX activity. We measured mitochondrial function in heart and skeletal muscle, and despite the significant reduction in COX activity, we found little or no difference in ROS (reactive oxygen species) generation, membrane potential, ATP production or respiration in isolated mitochondria from Surf1−/− mice compared with wild-type. However, blood lactate levels were elevated and Surf1−/− mice had reduced running endurance, suggesting compromised mitochondrial energy metabolism in vivo . Decreased COX activity in Surf1−/− mice is associated with increased markers of mitochondrial biogenesis [PGC-1α (peroxisome-proliferator-activated receptor γ co-activator 1α) and VDAC (voltage-dependent anion channel)] in both heart and skeletal muscle. Although mitochondrial biogenesis is a common response in the two tissues, skeletal muscle has an up-regulation of the UPRMT (mitochondrial unfolded protein response) and heart exhibits induction of the Nrf2 (nuclear factor-erythroid 2-related factor 2) antioxidant response pathway. These data are the first to show induction of the UPRMT in a mammalian model of decreased COX activity. In addition, the results of the present study suggest that impaired mitochondrial function can lead to induction of mitochondrial stress pathways to confer protective effects on cellular homoeostasis. Abbreviations: ARE, antioxidant response element; CHOP, C/EBP (CCAAT/enhancer-binding protein)-homologous protein; ClpP, caseinolytic peptidase; COX, cytochrome c oxidase; DCIP, dichlorophenol-indophenol; DIPPMPO, 5-(di-isopropoxyphosphoryl)-5-methyl-1-pyrroline-N-oxide; ETC, electron transport chain; 18FDG, 2-[18F]fluoro-2-deoxy-D-glucose; HO-1, haem oxygenase 1; Hsp60, heat-shock protein 60; MURE, mitochondrial unfolded response element; Nrf2, nuclear factor-erythroid 2-related factor 2; PET, positron-emission tomography; PGC-1α, peroxisome-proliferator-activated receptor γ co-activator 1α; RCR, respiratory control ratio; ROS, reactive oxygen species; SOD, superoxide dismutase; SURF1, surfeit locus protein 1; SUV, standardized uptake value; TFAM, mitochondrial transcription factor A; Trx, thioredoxin; UPRMT, mitochondrial unfolded protein response; VDAC, voltage-dependent anion channel

Journal ArticleDOI
TL;DR: The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia, and focuses attention on dysregulated pathways that underlie neurodegenersation in both aging adults with DS and AD.
Abstract: Accumulation of oxidative damage is a common feature of neurodegeneration that, together with mitochondrial dysfunction, point to the fact that reactive oxygen species are major contributors to loss of neuronal homoeostasis and cell death. Among several targets of oxidative stress, free-radical-mediated damage to proteins is particularly important in aging and age-related neurodegenerative diseases. In the majority of cases, oxidative-stress-mediated post-translational modifications cause non-reversible modifications of protein structure that consistently lead to impaired function. Redox proteomics methods are powerful tools to unravel the complexity of neurodegeneration, by identifying brain proteins with oxidative post-translational modifications that are detrimental for protein function. The present review discusses the current literature showing evidence of impaired pathways linked to oxidative stress possibly involved in the neurodegenerative process leading to the development of Alzheimer-like dementia. In particular, we focus attention on dysregulated pathways that underlie neurodegeneration in both aging adults with DS (Down's syndrome) and AD (Alzheimer's disease). Since AD pathology is age-dependent in DS and shows similarities with AD, identification of common oxidized proteins by redox proteomics in both DS and AD can improve our understanding of the overlapping mechanisms that lead from normal aging to development of AD. The most relevant proteomics findings highlight that disturbance of protein homoeostasis and energy production are central mechanisms of neurodegeneration and overlap in aging DS and AD. Protein oxidation affects crucial intracellular functions and may be considered a ‘leitmotif’ of degenerating neurons. Therapeutic strategies aimed at preventing/reducing multiple components of processes leading to accumulation of oxidative damage will be critical in future studies. Abbreviations: Aβ, amyloid β peptide; AD, Alzheimer’s disease; AGE, advanced glycation end-product; APP, amyloid precursor protein; CAT, catalase; Chr21, chromosome 21; CMA, chaperone-mediated autophagy; 2,4-DNPH, 2,4-dinitrophenylhydrazine; DS, Down's syndrome; ER, endoplasmic reticulum; ETC, electron transport chain; FBA, fructose bisphosphate aldolase; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GFAP, glial fibrillary acidic protein; GPX, glutathione peroxidase; GRP78, glucose-regulated protein of 78 kDa; HNE, 4-hydroxynonenal; HSC71, heat-shock cognate 71 stress protein; HSP, heat-shock protein; MAPK, mitogen-activated protein kinase; MCI, mild cognitive impairment; MDH, malate dehydrogenase; MeSOX, methionine sulfoxide; NFT, neurofibrillary tangle; 3-NT, 3-nitrotyrosine; OS, oxidative stress; PK, pyruvate kinase; PQC, protein quality control; PTM, post-translational modification; PUFA, polyunsaturated fatty acid; RNS, reactive nitrogen species; ROS, reactive oxygen species; SOD, superoxide dismutase; TCA, tricarboxylic acid; UCH-L1, ubiquitin C-terminal hydrolase L1; UPR, unfolded protein response; UPS, ubiquitin–proteasome system

Journal ArticleDOI
TL;DR: Recent advances in understanding of the diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology are reviewed.
Abstract: α-Actinins are a major class of actin filament cross-linking proteins expressed in virtually all cells. In muscle, actinins cross-link thin filaments from adjacent sarcomeres. In non-muscle cells, different actinin isoforms play analogous roles in cross-linking actin filaments and anchoring them to structures such as cell-cell and cell-matrix junctions. Although actinins have long been known to play roles in cytokinesis, cell adhesion and cell migration, recent studies have provided further mechanistic insights into these functions. Roles for actinins in synaptic plasticity and membrane trafficking events have emerged more recently, as has a 'non-canonical' function for actinins in transcriptional regulation in the nucleus. In the present paper we review recent advances in our understanding of these diverse cell biological functions of actinins in non-muscle cells, as well as their roles in cancer and in genetic disorders affecting platelet and kidney physiology. We also make two proposals with regard to the actinin nomenclature. First, we argue that naming actinin isoforms according to their expression patterns is problematic and we suggest a more precise nomenclature system. Secondly, we suggest that the α in α-actinin is superfluous and can be omitted.

Journal ArticleDOI
TL;DR: Results indicate that SIRT3 stabilizes FOXO3 via deacetylation, which enhances the mitochondrial antioxidant defence system to increase the adaptive capacity of ECs during hypoxia, which provides a direction for ameliorating the development of cardiovascular diseases.
Abstract: The endothelial cells (ECs) that line the vascular lumen are exposed to a wide variety of environmental stresses, such as hypoxia. Maladaptation to stress in ECs is a key event in the development of cardiovascular disease. Sirtuin 3 (SIRT3) is an NAD+-dependent protein deacetylase that modulates various proteins to control mitochondrial function and metabolism. We found that hypoxia elicits an increase in SIRT3 mRNA and protein expression in ECs. Under the same hypoxic conditions, the forkhead box class O transcription factor FOXO3 is deacetylated by SIRT3. The SIRT3-mediated deacetylation of FOXO3 further reduces FOXO3 phosphorylation, ubiquitination and degradation, thereby stabilizing FOXO3 proteins. As a result, the level of FOXO3 protein is increased during hypoxia. Moreover, a set of FOXO3-dependent mitochondrial antioxidant enzymes, including manganese superoxide dismutase (MnSOD), peroxiredoxin 3 (Prx3), Prx5 and thioredoxin 2 (Trx2), are up-regulated in ECs to facilitate ROS detoxification in response to hypoxia. The SIRT3-mediated deacetylation of FOXO3 preserves mitochondrial bioenergetic function and increases cell survival under hypoxic conditions. These results indicate that SIRT3 stabilizes FOXO3 via deacetylation, which enhances the mitochondrial antioxidant defence system to increase the adaptive capacity of ECs during hypoxia. This finding provides a direction for ameliorating the development of cardiovascular diseases.

Journal ArticleDOI
TL;DR: This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.
Abstract: TA (toxin–antitoxin) systems are widely distributed amongst bacteria and are associated with the formation of antibiotic tolerant (persister) cells that may have involvement in chronic and recurrent disease. We show that overexpression of the Burkholderia pseudomallei HicA toxin causes growth arrest and increases the number of persister cells tolerant to ciprofloxacin or ceftazidime. Furthermore, our data show that persistence towards ciprofloxacin or ceftazidime can be differentially modulated depending on the level of induction of HicA expression. Deleting the hicAB locus from B. pseudomallei K96243 significantly reduced persister cell frequencies following exposure to ciprofloxacin, but not ceftazidime. The structure of HicA(H24A) was solved by NMR and forms a dsRBD-like (dsRNA-binding domain-like) fold, composed of a triple-stranded β-sheet, with two helices packed against one face. The surface of the protein is highly positively charged indicative of an RNA-binding protein and His24 and Gly22 were functionality important residues. This is the first study demonstrating a role for the HicAB system in bacterial persistence and the first structure of a HicA protein that has been experimentally characterized.