scispace - formally typeset
Search or ask a question

Showing papers in "Biofouling in 2016"


Journal ArticleDOI
TL;DR: An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and deterioration.
Abstract: Biofilms constitute the predominant microbial style of life in natural and engineered ecosystems. Facing harsh environmental conditions, microorganisms accumulate reactive oxygen species (ROS), potentially encountering a dangerous condition called oxidative stress. While high levels of oxidative stress are toxic, low levels act as a cue, triggering bacteria to activate effective scavenging mechanisms or to shift metabolic pathways. Although a complex and fragmentary picture results from current knowledge of the pathways activated in response to oxidative stress, three main responses are shown to be central: the existence of common regulators, the production of extracellular polymeric substances, and biofilm heterogeneity. An investigation into the mechanisms activated by biofilms in response to different oxidative stress levels could have important consequences from ecological and economic points of view, and could be exploited to propose alternative strategies to control microbial virulence and d...

142 citations


Journal ArticleDOI
Haiying Cui1, Wei Li1, Changzhu Li, Saritporn Vittayapadung, Lin Lin1 
TL;DR: As a natural and safe spice, the cinnamon oil exhibited a satisfactory antibacterial performance on MRSA and its biofilms and the application of liposomes further improves the stability of antimicrobial agents and extends the action time.
Abstract: The global burden of bacterial disease remains high and is set against a backdrop of increasing antimicrobial resistance. There is a pressing need for highly effective and natural antibacterial agents. In this work, the anti-biofilm effect of cinnamon oil on methicillin-resistant Staphylococcus aureus was evaluated. Then, cinnamon oil was encapsulated in liposomes to enhance its chemical stability. The anti-biofilm activities of the liposome-encapsulated cinnamon oil against MRSA biofilms on stainless steel, gauze, nylon membrane and non-woven fabrics were evaluated by colony forming unit determination. Scanning electron microscopy and laser scanning confocal microscopy analyses were employed to observe the morphological changes in MRSA biofilms treated with the encapsulated cinnamon oil. As a natural and safe spice, the cinnamon oil exhibited a satisfactory antibacterial performance on MRSA and its biofilms. The application of liposomes further improves the stability of antimicrobial agents and extends the action time.

120 citations


Journal ArticleDOI
TL;DR: The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity; and biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes.
Abstract: Vibrio parahaemolyticus is one of the leading foodborne pathogens causing seafood contamination. Here, 22 V. parahaemolyticus strains were analyzed for biofilm formation to determine whether there is a correlation between biofilm formation and quorum sensing (QS), swimming motility, or hydrophobicity. The results indicate that the biofilm formation ability of V. parahaemolyticus is positively correlated with cell surface hydrophobicity, autoinducer (AI-2) production, and protease activity. Field emission scanning electron microscopy (FESEM) showed that strong-biofilm-forming strains established thick 3-D structures, whereas poor-biofilm-forming strains produced thin inconsistent biofilms. In addition, the distribution of the genes encoding pandemic clone factors, type VI secretion systems (T6SS), biofilm functions, and the type I pilus in the V. parahaemolyticus seafood isolates were examined. Biofilm-associated genes were present in almost all the strains, irrespective of other phenotypes. These results indicate that biofilm formation on/in seafood may constitute a major factor in the dissemination of V. parahaemolyticus and the ensuing diseases.

90 citations


Journal ArticleDOI
TL;DR: TBO–AgNP conjugates were found to be more phototoxic against S. mutans biofilm than TBO alone, indicating type I phototoxicity.
Abstract: The objective of this study was to evaluate the anti-biofilm efficacy of photodynamic therapy by conjugating a photosensitizer (TBO) with silver nanoparticles (AgNP). Streptococcus mutans was exposed to laser light (630 nm) for 70 s (9.1 J cm(-2)) in the presence of a toluidine blue O-silver nanoparticle conjugate (TBO-AgNP). The results showed a reduction in the viability of bacterial cells by 4 log10. The crystal violet assay, confocal laser scanning microscopy and scanning electron microscopy revealed that the TBO-AgNP conjugates inhibited biofilm formation, increased the uptake of propidium iodide and leakage of the cellular constituents, respectively. Fluorescence spectroscopic studies confirmed the generation of OH(•) as a major reactive oxygen species, indicating type I phototoxicity. Both the conjugates down-regulated the expression of biofilm related genes compared to TBO alone. Hence TBO-AgNP conjugates were found to be more phototoxic against S. mutans biofilm than TBO alone.

83 citations


Journal ArticleDOI
TL;DR: This mini-review examines the approach to assessments of ship biofouling among sectors (industry, biosecurity and marine science) and the implications for existing and emerging management of bioFouling.
Abstract: Biofouling exerts a frictional and cost penalty on ships and is a direct cause of invasion by marine species. These negative consequences provide a unifying purpose for the maritime industry and biosecurity managers to prevent biofouling accumulation and transfer, but important gaps exist between these sectors. This mini-review examines the approach to assessments of ship biofouling among sectors (industry, biosecurity and marine science) and the implications for existing and emerging management of biofouling. The primary distinctions between industry and biosecurity in assessment of vessels biofouling revolve around the resolution of biological information collected and the specific wetted surface areas of primary concern to each sector. The morphological characteristics of biofouling and their effects on propulsion dynamics are of primary concern to industry, with an almost exclusive focus on the vertical sides and flat bottom of hulls and an emphasis on antifouling and operational performance. In contrast, the identity, biogeography, and ecology of translocated organisms is of highest concern to invasion researchers and biosecurity managers and policymakers, especially as it relates to species with known histories of invasion elsewhere. Current management practices often provide adequate, although not complete, provision for hull surfaces, but niche areas are well known to enhance biosecurity risk. As regulations to prevent invasions emerge in this arena, there is a growing opportunity for industry, biosecurity and academic stakeholders to collaborate and harmonize efforts to assess and manage biofouling of ships that should lead to more comprehensive biofouling solutions that promote industry goals while reducing biosecurity risk and greenhouse gas emissions.

82 citations


Journal ArticleDOI
TL;DR: A modified method for predicting the total drag of a spatially developing turbulent boundary layer (TBL), such as that on the hull of a ship, is presented, numerically integrates the skin friction over the length of the boundary layer, assuming an analytical form for the mean velocity profile of the TBL.
Abstract: A test coupon coated with light calcareous tubeworm fouling was scanned, scaled and reproduced for wind-tunnel testing to determine the equivalent sand grain roughness ks. It was found that this surface had a ks = 0.325 mm, substantially less than the previously reported values for light calcareous fouling. This result was used to predict the drag on a fouled full scale ship. To achieve this, a modified method for predicting the total drag of a spatially developing turbulent boundary layer (TBL), such as that on the hull of a ship, is presented. The method numerically integrates the skin friction over the length of the boundary layer, assuming an analytical form for the mean velocity profile of the TBL. The velocity profile contains the roughness (fouling) information, such that the prediction requires only an input of ks, the free-stream velocity (ship speed), the kinematic viscosity and the length of the boundary layer (the hull length). Using the equivalent sandgrain roughness height determined from experiments, a FFG-7 Oliver Perry class frigate is predicted to experience a 23% increase in total resistance at cruise, if its hull is coated in light calcareous tubeworm fouling. A similarly fouled very large crude carrier would experience a 34% increase in total resistance at cruise.

72 citations


Journal ArticleDOI
TL;DR: The role of farnesol is highlighted as an alternative agent with the potential to reduce the formation of pathogenic biofilms and promotes significant log reductions in the number of CFUs.
Abstract: The aim of this study was to evaluate the effect of the QS molecule farnesol on single and mixed species biofilms formed by Candida albicans and Streptococcus mutans. The anti-biofilm effect of farnesol was assessed through total biomass quantification, counting of colony forming units (CFUs) and evaluation of metabolic activity. Biofilms were also analyzed by scanning electron microscopy (SEM). It was observed that farnesol reduced the formation of single and mixed biofilms, with significant reductions of 37% to 90% and 64% to 96%, respectively, for total biomass and metabolic activity. Regarding cell viability, farnesol treatment promoted significant log reductions in the number of CFUs, ie 1.3-4.2 log10 and 0.67-5.32 log10, respectively, for single and mixed species biofilms. SEM images confirmed these results, showing decreases in the number of cells in all biofilms. In conclusion, these findings highlight the role of farnesol as an alternative agent with the potential to reduce the formation of pathogenic biofilms.

64 citations


Journal ArticleDOI
TL;DR: The immobilisation of certain AMPs at nanomolar concentration to pHEMA is an effective option to develop a stable antimicrobial surface and shows any toxicity towards mouse L929 cells.
Abstract: The objective of this study was to immobilise and characterise a variety of antimicrobial peptides (AMPs) onto poly-hydroxyethylmethacrylate (pHEMA) surfaces to achieve an antibacterial effect. Four AMPs, viz. LL-37, melimine, lactoferricin and Mel-4 were immobilised on pHEMA by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) which assisted covalent attachment. Increasing concentrations of AMPs were immobilised to determine the effect on the adhesion of Pseudomonas aeruginosa and Staphylococcus aureus. The AMP immobilised pHEMAs were characterised by X-ray photoelectron spectroscopy (XPS) to determine the surface elemental composition and by amino acid analysis to determine the total amount of AMP attached. In vitro cytotoxicity of the immobilised pHEMA samples to mouse L929 cells was investigated. Melimine and Mel-4 when immobilised at the highest concentrations showed 3.1 ± 0.6 log and 1.3 ± 0.2 log inhibition against P. aeruginosa, and 3.9 ± 0.6 log and 2.4 ± 0.5 log inhibiti...

63 citations


Journal ArticleDOI
TL;DR: In this paper, the effect of linalool on planktonic cells and biofilms of A. baumannii on different surfaces, as well as its effect on adhesion and quorum sensing was evaluated.
Abstract: Acinetobacter baumannii is a pathogen that has the ability to adhere to surfaces in the hospital environment and to form biofilms which are increasingly resistant to antimicrobial agents. The aim of this work was to study the antimicrobial activity of the major oil compounds of Coriandrum sativum against A. baumannii. The effect of linalool on planktonic cells and biofilms of A. baumannii on different surfaces, as well as its effect on adhesion and quorum sensing was evaluated. From all the compounds evaluated, linalool was the compound with the best antibacterial activity, with minimum inhibitory concentration values between 2 and 8 μl ml(-1). Linalool also inhibited biofilm formation and dispersed established biofilms of A. baumannii, changed the adhesion of A. baumannii to surfaces and interfered with the quorum- sensing system. Thus, linalool could be a promising antimicrobial agent for controlling planktonic cells and biofilms of A. baumannii.

60 citations


Journal ArticleDOI
TL;DR: The present study demonstrates the use of RA as a plausible phytotherapeutic compound to control QS mediated biofilm formation and virulence factor production in A. hydrophila.
Abstract: Rosmarinic acid (RA) was assessed for its quorum sensing inhibitory (QSI) potential against Aeromonas hydrophila strains AH 1, AH 12 and MTCC 1739. The pathogenic strains of A. hydrophila were isolated from infected zebrafish and identified through biochemical analysis and amplification of a species-specific gene (rpsL). The biofilm inhibitory concentration (BIC) of RA against A. hydrophila strains was found to be 750 μg ml-1. At this concentration, RA reduced the QS mediated hemolysin, lipase and elastase production in A. hydrophila. In FT-IR analysis, RA treated A. hydrophila cells showed a reduction in cellular components. Gene expression analysis confirmed the down-regulation of virulence genes such as ahh1, aerA, lip and ahyB. A. hydrophila infected zebrafish upon treatment with RA showed increased survival rates. Thus, the present study demonstrates the use of RA as a plausible phytotherapeutic compound to control QS mediated biofilm formation and virulence factor production in A. hydrophila.

57 citations


Journal ArticleDOI
TL;DR: The patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ribosomal RNA gene barcoding in combination with high-throughput sequencing.
Abstract: In this experimental study the patterns in early marine biofouling communities and possible implications for surveillance and environmental management were explored using metabarcoding, viz. 18S ri...

Journal ArticleDOI
TL;DR: Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.
Abstract: Biofilms are integral to many marine processes but their formation and function may be affected by anthropogenic inputs that alter environmental conditions, including fertilisers that increase nutrients. Density composition and connectivity of biofilms developed in situ (under ambient and elevated nutrients) were compared using 454-pyrosequencing of the 16S gene. Elevated nutrients shifted community composition from bacteria involved in higher processes (eg Pseudoalteromonas spp. invertebrate recruitment) towards more nutrient-tolerant bacterial species (eg Terendinibacter sp.). This may enable the persistence of biofilm communities by increasing resistance to nutrient inputs. A core biofilm microbiome was identified (predominantly Alteromonadales and Oceanospirillales) and revealed shifts in abundances of core microbes that could indicate enrichment by fertilisers. Fertiliser decreased density and connectivity within biofilms indicating that associations were disrupted perhaps via changes to energetic allocations within the core microbiome. Density composition and connectivity changes suggest nutrients can affect the stability and function of these important marine communities.

Journal ArticleDOI
TL;DR: A novel anti-biofilm combination was determined to effectively inhibit biofilm formation by P. acnes without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance.
Abstract: Propionibacterium acnes is an opportunistic pathogen which has become notorious owing to its ability to form a recalcitrant biofilm and to develop drug resistance. The current study aimed to develop anti-biofilm treatments against clinical isolates of P. acnes under in vitro and in vivo conditions. A combination of ellagic acid and tetracycline (ETC; 250 μg ml(-1) + 0.312 μg ml(-1)) was determined to effectively inhibit biofilm formation by P. acnes (80-91%) without affecting its growth, therefore potentially limiting the possibility of the bacterium attaining resistance. In addition, ETC reduced the production of extracellular polymeric substances (EPS) (20-26%), thereby making P. acnes more susceptible to the human immune system and antibiotics. The anti-biofilm potential of ETC was further substantiated under in vivo conditions using Caenorhabditis elegans. This study reports a novel anti-biofilm combination that could be developed as an ideal therapeutic agent with broad cosmeceutical and pharmaceutical applicability in the era of antibiotic resistance.

Journal ArticleDOI
TL;DR: CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.
Abstract: This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.

Journal ArticleDOI
TL;DR: While charged polymers are unsuitable as antifouling coatings in the natural environment, they provide valuable insights into fouling processes, and are relevant for studies due to charging of nominally neutral surfaces.
Abstract: The resistance of charged polymers to biofouling was investigated by subjecting cationic (PDMAEMA), anionic (PSPMA), neutral (PHEMA-co-PEG10MA), and zwitterionic (PSBMA) brushes to assays testing protein adsorption; attachment of the marine bacterium Cobetia marina; settlement and adhesion strength of zoospores of the green alga Ulva linza; settlement of barnacle (Balanus amphitrite and B. improvisus) cypris larvae; and field immersion tests. Several results go beyond the expected dependence on direct electrostatic attraction; PSPMA showed good resistance towards attachment of C. marina, low settlement and adhesion of U. linza zoospores, and significantly lower biofouling than on PHEMA-co-PEG10MA or PSBMA after a field test for one week. PDMAEMA showed potential as a contact-active anti-algal coating due to its capacity to damage attached spores. However, after field testing for eight weeks, there were no significant differences in biofouling coverage among the surfaces. While charged polymers are...

Journal ArticleDOI
TL;DR: Prolonged fungi–polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance.
Abstract: Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.

Journal ArticleDOI
TL;DR: The results suggest that L. fermentum UCO-979C has probiotic potential against H. pylori infections, but further analyses are needed to explain the increased activity observed against the pathogen in AGS cells as compared to L. casei Shirota.
Abstract: The ability of the human isolate Lactobacillus fermentum UCO-979C to form biofilm and synthesize exopolysaccharide on abiotic and biotic models is described. These properties were compared with the well-known Lactobacillus casei Shirota to better understand their anti-Helicobacter pylori probiotic activities. The two strains of lactobacilli synthesized exopolysaccharide as detected by the Dubois method and formed biofilm on abiotic and biotic surfaces visualized by crystal violet staining and scanning electron microscopy. Concomitantly, these strains inhibited H. pylori urease activity by up to 80.4% (strain UCO-979C) and 66.8% (strain Shirota) in gastric adenocarcinoma (AGS) cells, but the two species showed equal levels of inhibition (~84%) in colorectal adenocarcinoma (Caco-2) cells. The results suggest that L. fermentum UCO-979C has probiotic potential against H. pylori infections. However, further analyses are needed to explain the increased activity observed against the pathogen in AGS cells as compared to L. casei Shirota.

Journal ArticleDOI
TL;DR: Candida albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.
Abstract: Whilst Candida albicans occurs in peri-implant biofilms, its role in peri-implantitis remains unclear. This study therefore examined the virulence of C. albicans in mixed-species biofilms on titanium surfaces. Biofilms of C. albicans (Ca), C. albicans with streptococci (Streptococcus sanguinis, S. mutans) (Ca-Ss-Sm) and those incorporating Porphyromonas gingivalis (Ca-Pg and Ca-Ss-Sm-Pg) were developed. Expression of C. albicans genes associated with adhesion (ALS1, ALS3, HWP1) and hydrolytic enzymes (SAP2, SAP4, SAP6, PLD1) was measured and hyphal production by C. albicans quantified. Compared with Ca biofilms, significant (p<0.05) up-regulation of ALS3, HWP1, SAP2 and SAP6, and hyphal production occurred in biofilms containing streptococci (Ca-Ss-Sm). In Ca-Pg biofilms, down-regulation of HWP1 and SAP4 expression, with reduced hyphal production occurred. Ca-Ss-Sm-Pg biofilms had increased hyphal proportions and up-regulation of ALS3, SAP2 and SAP6. In conclusion, C. albicans expressed virulence factors in biofilms that could contribute to peri-implantitis, but this was dependent on associated bacterial species.

Journal ArticleDOI
TL;DR: Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria, likely common pioneer colonizers of building stone surfaces, including granite.
Abstract: Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments.

Journal ArticleDOI
TL;DR: It was demonstrated that a specific threshold of surface concentration is required to induce significant bacterial death and it was shown for the first time that adhesion of constituents of the culture medium to the quaternary ammonium modified surface eliminated any cytotoxicity towards eukaryotic cells such as primary human fibroblasts.
Abstract: Bacterial colonization of medical devices causes infections and is a significant problem in healthcare. The use of antibacterial coatings is considered as a potential solution to this problem and has attracted a great deal of attention. Using concentration density gradients of immobilized quaternary ammonium compounds it was demonstrated that a specific threshold of surface concentration is required to induce significant bacterial death. It was determined that this threshold was 4.18% NR4(+) bonded nitrogen with a surface potential of + 120.4 mV. Furthermore, it is shown for the first time that adhesion of constituents of the culture medium to the quaternary ammonium modified surface eliminated any cytotoxicity towards eukaryotic cells such as primary human fibroblasts. The implications of this type of surface fouling on the antimicrobial efficacy of surface coatings are also discussed.

Journal ArticleDOI
TL;DR: While the films withSi-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrites.
Abstract: Block copolymers made from a poly(dimethyl siloxane) (Si) and a poly(meth)acrylate carrying oxyethylene (EG) or fluoroalkyl (AF) side chains were synthesized and incorporated as surface-active components into a silicone matrix to produce cross-linked films with different surface hydrophilicity/phobicity. Near-edge X-ray absorption fine structure (NEXAFS) studies showed that film surfaces containing Si-EG were largely populated by the siloxane, with the oxyethylene chains present only to a minor extent. In contrast, the fluorinated block was selectively segregated to the polymer-air interface in films containing Si-AF as probed by NEXAFS and X-ray photoelectron spectroscopy (XPS) analyses. Such differences in surface composition were reflected in the biological performance of the coatings. While the films with Si-EG showed a higher removal of both Ulva linza sporelings and Balanus amphitrite juveniles than the silicone control, those with Si-AF exhibited excellent antifouling properties, preventing the settlement of cyprids of B. amphitrite.

Journal ArticleDOI
TL;DR: The anti-biofilm potential of the fractions emphasizes the putative antifouling role of EPS in the environment and strongly inhibited biofilm formation by marine bacterial strains in a concentration-dependent manner.
Abstract: This study investigated soluble (Sol-EPS), loosely bound (LB-EPS), and tightly bound extracellular polymeric substances (TB-EPS) harvested from biofilm and planktonic cultures of the marine bacterium Pseudoalteromonas ulvae TC14. The aim of the characterization (colorimetric methods, FTIR, GC-MS, NMR, HPGPC, and AFM analyses) was to identify new anti-biofilm compounds; activity was assessed using the BioFilm Ring Test®. A step-wise separation of EPS was designed, based on differences in water-solubility and acidity. An acidic fraction was isolated from TB-EPS, which strongly inhibited biofilm formation by marine bacterial strains in a concentration-dependent manner. The main constituents of this fraction were characterized as two glucan-like polysaccharides. An active poly(glutamyl-glutamate) fraction was also recovered from TB-EPS. The distribution of these key EPS components in Sol-EPS, LB-EPS, and TB-EPS was distinct and differed quantitatively in biofilm vs planktonic cultures. The anti-biofilm potential of the fractions emphasizes the putative antifouling role of EPS in the environment.

Journal ArticleDOI
TL;DR: The chemical compositions of the surface conditioning layers formed by different types of solutions, involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation.
Abstract: The chemical compositions of the surface conditioning layers formed by different types of solutions (from isolated EPS to whole culture media), involving different bacterial strains relevant for biocorrosion were compared, as they may influence the initial step in biofilm formation. Different substrata (polystyrene, glass, steel) were conditioned and analyzed by X-ray photoelectron spectroscopy. Peak decomposition and assignment were validated by correlations between independent spectral data and the ubiquitous presence of organic contaminants on inorganic substrata was taken into account. Proteins or peptides were found to be a major constituent of all conditioning layers and polysaccharides were not present in appreciable concentrations; the proportion of nitrogen which may be due to DNA was lower than 15%. There was no significant difference between the compositions of the adlayers formed from different conditioning solutions, except for the adlayers produced with tightly bound EPS extracted from D. alaskensis.

Journal ArticleDOI
TL;DR: A novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments and highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-Kingdom components, as these impact penetration and efficacy of topical antiseptics.
Abstract: Chronic diabetic foot ulcers are frequently colonised and infected by polymicrobial biofilms that ultimately prevent healing. This study aimed to create a novel in vitro inter-kingdom wound biofilm model on complex hydrogel-based cellulose substrata to test commonly used topical wound treatments. Inter-kingdom triadic biofilms composed of Candida albicans, Pseudomonas aeruginosa, and Staphylococcus aureus were shown to be quantitatively greater in this model compared to a simple substratum when assessed by conventional culture, metabolic dye and live dead qPCR. These biofilms were both structurally complex and compositionally dynamic in response to topical therapy, so when treated with either chlorhexidine or povidone iodine, principal component analysis revealed that the 3-D cellulose model was minimally impacted compared to the simple substratum model. This study highlights the importance of biofilm substratum and inclusion of relevant polymicrobial and inter-kingdom components, as these impact penetration and efficacy of topical antiseptics.

Journal ArticleDOI
TL;DR: The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra and is the first study to survey adhesion-related genes in Hydra.
Abstract: The differentiated ectodermal basal disc cells of the freshwater cnidarian Hydra secrete proteinaceous glue to temporarily attach themselves to underwater surfaces. Using transcriptome sequencing and a basal disc-specific RNA-seq combined with in situ hybridisation a highly specific set of candidate adhesive genes was identified. A de novo transcriptome assembly of 55,849 transcripts (>200 bp) was generated using paired-end and single reads from Illumina libraries constructed from different polyp conditions. Differential transcriptomics and spatial gene expression analysis by in situ hybridisation allowed the identification of 40 transcripts exclusively expressed in the ectodermal basal disc cells. Comparisons after mass spectrometry analysis of the adhesive secretion showed a total of 21 transcripts to be basal disc specific and eventually secreted through basal disc cells. This is the first study to survey adhesion-related genes in Hydra. The candidate list presented in this study provides a platform for unravelling the molecular mechanism of underwater adhesion of Hydra.

Journal ArticleDOI
TL;DR: The observed AF activity of the ZnO nanocoatings is attributed to the formation of reactive oxygen species (ROS) through photocatalysis in the presence of sunlight.
Abstract: The antifouling (AF) properties of zinc oxide (ZnO) nanorod coated glass substrata were investigated in an out-door mesocosm experiment under natural sunlight (14:10 light: dark photoperiod) over a period of five days. The total bacterial density (a six-fold reduction) and viability (a three-fold reduction) was significantly reduced by nanocoatings in the presence of sunlight. In the absence of sunlight, coated and control substrata were colonized equally by bacteria. MiSeq Illumina sequencing of 16S rRNA genes revealed distinct bacterial communities on the nanocoated and control substrata in the presence and absence of light. Diatom communities also varied on nanocoated substrata in the presence and the absence of light. The observed AF activity of the ZnO nanocoatings is attributed to the formation of reactive oxygen species (ROS) through photocatalysis in the presence of sunlight. These nanocoatings are a significant step towards the production of an environmentally friendly AF coating that utilizes a sustainable supply of sunlight.

Journal ArticleDOI
TL;DR: FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections because of its anti-biofilm effect.
Abstract: Staphylococcus aureus is a versatile human pathogen that produces diverse virulence factors, and its biofilm cells are difficult to eradicate due to their inherent ability to tolerate antibiotics. The anti-biofilm activities of the spent media of 252 diverse endophytic microorganisms were investigated using three S. aureus strains. An attempt was made to identify anti-biofilm compounds in active spent media and to assess their anti-hemolytic activities and hydrophobicities in order to investigate action mechanisms. Unlike other antibiotics, actinomycin D (0.5 μg ml(-1)) from Streptomyces parvulus significantly inhibited biofilm formation by all three S. aureus strains. Actinomycin D inhibited slime production in S. aureus and it inhibited hemolysis by S. aureus and caused S. aureus cells to become less hydrophobic, thus supporting its anti-biofilm effect. In addition, surface coatings containing actinomycin D prevented S. aureus biofilm formation on glass surfaces. Given these results, FDA-approved actinomycin D warrants further attention as a potential antivirulence agent against S. aureus infections.

Journal ArticleDOI
TL;DR: Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology.
Abstract: Knowledge of biofouling typical of marine structures is essential for engineers to define appropriate loading criteria in addition to informing other stakeholders about the ecological implications of creating novel artificial environments. There is a lack of information regarding biofouling community composition (including weight and density characteristics) on floating structures associated with future marine renewable energy generation technologies. A network of navigation buoys were identified across a range of geographical areas, environmental conditions (tidal flow speed, temperature and salinity), and deployment durations suitable for future developments. Despite the perceived importance of environmental and temporal factors, geographical location explained the greatest proportion of the observed variation in community composition, emphasising the importance of considering geography when assessing the impact of biofouling on device functioning and associated ecology. The principal taxa assoc...

Journal ArticleDOI
TL;DR: Bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.
Abstract: Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae–Escherichia coli, E. coli–Enterococcus faecalis, K. pneumoniae–E. faecalis, and K. pneumoniae–Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initi...

Journal ArticleDOI
TL;DR: D1-23 showed a substantial effect against cariogenic bacteria and low cytotoxicity and did not show a synergic effect against Streptococcus mutans.
Abstract: This study evaluated the cytotoxicity and effect of fragments derived from three oral cationic peptides (CP): LL-37, D6-17 and D1-23 against cariogenic bacteria under planktonic and biofilm conditions. For cytotoxicity analysis, two epithelial cell lines were used. The minimum inhibitory concentration and the minimal bactericidal concentration were determined for the CP fragments and the control (chlorhexidine-CHX) against cariogenic bacteria. The fractional inhibitory concentration was obtained for the combinations of CP fragments on Streptococcus mutans. Biofilm assays were conducted with the best antimicrobial CP fragment against S. mutans. The results indicated that D6-17 was not cytotoxic. D1-23, LL-37 and CHX were not cytotoxic in low concentrations. D1-23 presented the best bactericidal activity against S. mutans, S. mitis and S. salivarius. Combinations of CP fragments did not show a synergic effect. D1-23 presented a higher activity against S. mutans biofilm than CHX. It was concluded tha...