scispace - formally typeset
Search or ask a question

Showing papers in "Biotechnology Letters in 2010"


Journal ArticleDOI
TL;DR: Plant growth-promoting rhizobacteria (PGPR) are potential agents for the biological control of plant pathogens and a biocontrol strain should be able to protect the host plant from pathogens and fulfill the requirement for strong colonization.
Abstract: The rhizosphere is the soil-plant root interphase and in practice consists of the soil adhering to the root besides the loose soil surrounding it. Plant growth-promoting rhizobacteria (PGPR) are potential agents for the biological control of plant pathogens. A biocontrol strain should be able to protect the host plant from pathogens and fulfill the requirement for strong colonization. Numerous compounds that are toxic to pathogens, such as HCN, phenazines, pyrrolnitrin, and pyoluteorin as well as, other enzymes, antibiotics, metabolites and phytohormones are the means by which PGPR act, just as quorum sensing and chemotaxis which are vital for rhizosphere competence and colonization. The presence of root exudates has a pronounced effect on the rhizosphere where they serve as an energy source, promoting growth and influencing the root system for the rhizobacteria. In certain instances they have products that inhibit the growth of soil-borne pathogens to the advantage of the plant root. A major source of concern is reproducibility in the field due to the complex interaction between the plant (plant species), microbe and the environment (soil fertility and moisture, day length, light intensity, length of growing season, and temperature). This review listed most of the documented PGPR genera and discussed their exploitation.

580 citations


Journal ArticleDOI
TL;DR: In this article, a review of biopolymeric gels that have been used for the encapsulation of mammalian cells for tissue engineering applications as well as a brief overview of cell encapsulation for therapeutic protein production is presented.
Abstract: There has been a consistent increase in the mean life expectancy of the population of the developed world over the past century. Healthy life expectancy, however, has not increased concurrently. As a result we are living a larger proportion of our lives in poor health and there is a growing demand for the replacement of diseased and damaged tissues. While traditionally tissue grafts have functioned well for this purpose, the demand for tissue grafts now exceeds the supply. For this reason, research in regenerative medicine is rapidly expanding to cope with this new demand. There is now a trend towards supplying cells with a material in order to expedite the tissue healing process. Hydrogel encapsulation provides cells with a three dimensional environment similar to that experienced in vivo and therefore may allow the maintenance of normal cellular function in order to produce tissues similar to those found in the body. In this review we discuss biopolymeric gels that have been used for the encapsulation of mammalian cells for tissue engineering applications as well as a brief overview of cell encapsulation for therapeutic protein production. This review focuses on agarose, alginate, collagen, fibrin, hyaluronic acid and gelatin since they are widely used for cell encapsulation. The literature on the regeneration of cartilage, bone, ligament, tendon, skin, blood vessels and neural tissues using these materials has been summarised.

406 citations


Journal ArticleDOI
TL;DR: Recent successes in recombinant protein production in Chlamydomonas are described, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms.
Abstract: A complete set of genetic tools is still being developed for the micro-alga Chlamydomonas reinhardtii. Yet even with this incomplete set, this photosynthetic single-celled plant has demonstrated significant promise as a platform for recombinant protein expression. In recent years, techniques have been developed that allow for robust expression of genes from both the nuclear and plastid genome. With these advances, many research groups have examined the pliability of this and other micro-algae as biological machines capable of producing recombinant peptides and proteins. This review describes recent successes in recombinant protein production in Chlamydomonas, including production of complex mammalian therapeutic proteins and monoclonal antibodies at levels sufficient for production at economic parity with existing production platforms. These advances have also shed light on the details of algal protein production at the molecular level, and provide insight into the next steps for optimizing micro-algae as a useful platform for the production of therapeutic and industrially relevant recombinant proteins.

279 citations


Journal ArticleDOI
TL;DR: This review describes the abiotic and biotic stresses and current developing methods for the acclimatization of microshoots, focused on the control of both physical and chemical environment and biohardening of micropropagated plantlets.
Abstract: The ultimate success of micropropagation on a commercial scale depends on the ability to transfer plants out of culture on a large scale, at low cost and with high survival rates. During field transfer the in vitro grown plantlets are unable to compete with soil microbes and to cope with the environmental conditions. The in vitro culture conditions result in the plantlets with altered morphology, anatomy and physiology. In order to increase growth and reduce mortality in plantlets at the acclimatisation stage, efforts are focused on the control of both physical and chemical environment and biohardening of micropropagated plantlets. This review describes the abiotic and biotic stresses and current developing methods for the acclimatization of microshoots.

277 citations


Journal ArticleDOI
TL;DR: A critical overview of commonly used and newly developed normalization methods for miRNA RT-qPCR, miRNA hybridization microarray, and small RNA-seq datasets is provided, with emphasis on the complexity, the importance and the potential for further optimization of normalization techniques for mi RNA profiling datasets.
Abstract: MicroRNA (miRNA) profiling is a first important step in elucidating miRNA functions. Real time quantitative PCR (RT-qPCR) and microarray hybridization approaches as well as ultra high throughput sequencing of miRNAs (small RNA-seq) are popular and widely used profiling methods. All of these profiling approaches face significant introduction of bias. Normalization, often an underestimated aspect of data processing, can minimize systematic technical or experimental variation and thus has significant impact on the detection of differentially expressed miRNAs. At present, there is no consensus normalization method for any of the three miRNA profiling approach. Several normalization techniques are currently in use, of which some are similar to mRNA profiling normalization methods, while others are specifically modified or developed for miRNA data. The characteristic nature of miRNA molecules, their composition and the resulting data distribution of profiling experiments challenges the selection of adequate normalization techniques. Based on miRNA profiling studies and comparative studies on normalization methods and their performances, this review provides a critical overview of commonly used and newly developed normalization methods for miRNA RT-qPCR, miRNA hybridization microarray, and small RNA-seq datasets. Emphasis is laid on the complexity, the importance and the potential for further optimization of normalization techniques for miRNA profiling datasets.

221 citations


Journal ArticleDOI
TL;DR: In micromass culture, the induced-cartilage tissues were larger, more homogenous and enriched in cartilage-specific collagen II but the fibrocartilage-like feature, collagen I, and hypertrophic chondrocytefeature, collagen X, were markedly decreased compared to those in pellet culture.
Abstract: High-density cell culture is pivotal for the chondrogenic differentiation of human mesenchymal stem cells (hMSCs). Two high-density cell culture systems, micromass and pellet culture, have been used to induce chondrogenic differentiation of hMSCs. In micromass culture, the induced-cartilage tissues were larger, more homogenous and enriched in cartilage-specific collagen II but the fibrocartilage-like feature, collagen I, and hypertrophic chondrocyte feature, collagen X, were markedly decreased compared to those in pellet culture. Furthermore, real time RT-PCR analysis demonstrated that collagen II and aggrecan mRNA were up-regulated while collagen X and collagen I mRNA were down-regulated in micromass culture. Thus, the micromass culture system is a promising tool for in vitro chondrogenic studies.

213 citations


Journal ArticleDOI
TL;DR: Various methods such as precipitation, sorption and ion exchange, electrodialysis, and liquid–liquid extraction have been investigated for the recovery of succinic acid from fermentation broth and are reviewed critically here.
Abstract: Succinic acid is of high interest as bio-feedstock for the chemical industry. It is a precursor for a variety of many other chemicals, e.g. 1,4-butandiol, tetrahydrofuran, biodegradable polymers and fumaric acid. Besides optimized production strains and fermentation processes it is indispensable to develop cost-saving and energy-effective downstream processes to compete with the current petrochemical production process. Various methods such as precipitation, sorption and ion exchange, electrodialysis, and liquid–liquid extraction have been investigated for the recovery of succinic acid from fermentation broth and are reviewed critically here.

190 citations


Journal ArticleDOI
TL;DR: The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.
Abstract: Nanotechnology is relevant to diverse fields of science and technology. Due to the many advantages over non-biological systems, several research groups have exploited the use of biological systems for the synthesis of nanoparticles. Among the different microbes used for the synthesis of nanoparticles, fungi are efficient candidates for fabrication of metal nanoparticles both intra- and extracellulary. The nanoparticles synthesized using fungi present good polydispersity, dimensions and stability. The potential applications of nanotechnology and nanoparticles in different fields have revolutionized the health care, textile and agricultural industries and they are reviewed here.

171 citations


Journal ArticleDOI
TL;DR: It is demonstrated that the overexpression of GLOase gene enhanced basal levels of AsA in potato tubers and also the transgenics showed better survival under various abiotic stresses.
Abstract: l-Ascorbic acid (Vitamin C, AsA) is an important component of human nutrition. Plants and several animals can synthesize their own ascorbic acid, whereas humans lack the gene essential for ascorbic acid biosynthesis and must acquire from their diet. In the present study, we developed transgenic potato (Solanum tuberosum L. cv. Taedong Valley) over-expressing l-gulono-γ-lactone oxidase (GLOase gene; NCBI Acc. No. NM022220), isolated from rat cells driven by CaMV35S constitutive promoter that showed enhanced AsA accumulation. Molecular analyses of four independent transgenic lines performed by PCR, Southern and RT-PCR revealed the stable integration of the transgene in the progeny. The transformation frequency was ca. 7.5% and the time required for the generation of transgenic plants was 6–7 weeks. Transgenic tubers showed significantly enhanced AsA content (141%) and GLOase activity as compared to untransformed tubers. These transgenics were also found to withstand various abiotic stresses caused by Methyl Viologen (MV), NaCl or mannitol, respectively. The T1 transgenic plants exposed to salt stress (100 mM NaCl) survived better with increased shoot and root length when compared to untransformed plants. The elevated level of AsA accumulation in transgenics was directly correlated with their ability to withstand abiotic stresses. These results further demonstrated that the overexpression of GLOase gene enhanced basal levels of AsA in potato tubers and also the transgenics showed better survival under various abiotic stresses.

140 citations


Journal ArticleDOI
TL;DR: T2 transgenic tobacco plants showed higher tolerance at the seedling stage than wild-type plants to salt and mannitol as demonstrated by longer root length and less growth retardation and the cDNA encoding GsGST contains an open reading frame of 660 bp.
Abstract: Glycine soja is a species of soybean that survives in adverse environments including high salt and drought conditions. We constructed a cDNA library from G. soja seedlings treated with NaCl and isolated a glutathione S-transferase gene (GsGST: GQ265911) from the library. The cDNA encoding GsGST contains an open reading frame of 660 bp and the predicted protein belongs to the tau class of GST family proteins. Tobacco plants over-expressing the GsGST gene showed sixfold higher GST activity than wild-type plants. Transgenic tobacco plants exhibited enhanced dehydration tolerance. T(2) transgenic tobacco plants showed higher tolerance at the seedling stage than wild-type plants to salt and mannitol as demonstrated by longer root length and less growth retardation.

137 citations


Journal ArticleDOI
TL;DR: This work has shown that Staphylococcus aureus sortase A cleaves a short C-terminal recognition motif (LPXTG) on the target protein followed by the formation of an amide bond with the pentaglycine cross-bridge in the cell wall.
Abstract: Sortases are transpeptidases produced by Gram-positive bacteria to anchor cell surface proteins covalently to the cell wall. The Staphylococcus aureus sortase A (SrtA) cleaves a short C-terminal recognition motif (LPXTG) on the target protein followed by the formation of an amide bond with the pentaglycine cross-bridge in the cell wall. Over recent years, several researchers have exploited this specific reaction for a range of biotechnology applications, including the incorporation of non-native peptides and non-peptidic molecules into proteins, the generation of nucleic acid-peptide conjugates and neoglycoconjugates, protein circularisation, and labelling of cell surface proteins on living cells.

Journal ArticleDOI
TL;DR: The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.
Abstract: The production of biodiesel by transesterification employing acid or base catalyst has been industrially accepted for its high conversion and reaction rates. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods. Recently, enzymatic transesterification involving lipases has attracted attention for biodiesel production as it produces high purity product and enables easy separation from the byproduct, glycerol. The use of immobilized lipases and immobilized whole cells may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. The present review gives an overview on biodiesel production technology and analyzes the factors/methods of enzymatic approach reported in the literature and also suggests suitable method on the basis of evidence for industrial production of biodiesel.

Journal ArticleDOI
TL;DR: Propanol at 1% (v/v) enhanced both PHA and biomass formation significantly and, furthermore, resulted in incorporation of 3-hydroxyvalerate units into PHA structure, indicating propanol can be used as an effective precursor of 2,3-Hydroxyvalarete for production of poly(3,hydroxybutyrate-co-3-hydroxvalerate) copolymer.
Abstract: Waste rapeseed oil is a useful substrate for polyhydroxyalkanoates (PHA) production employing Cupriavidus necator H16. In fed-batch mode, we obtained biomass and PHA yields of 138 and 105 g l−1, respectively. Yield coefficient and volumetric productivity were 0.83 g PHA per g oil and 1.46 g l−1 h−1, respectively. Propanol at 1% (v/v) enhanced both PHA and biomass formation significantly and, furthermore, resulted in incorporation of 3-hydroxyvalerate units into PHA structure. Thus, propanol can be used as an effective precursor of 3-hydroxyvalarete for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) copolymer. During the fed-batch cultivation, propanol concentration was maintained at 1% which resulted in 8% content of 3-hydroxyvalerate in copolymer.

Journal ArticleDOI
TL;DR: Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations, and low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.
Abstract: Methods for the preparation of carrier-free insoluble enzymes are reviewed. The technology of cross-linked enzyme aggregates has now been applied to a range of synthetically useful activities. Fusion proteins are also gaining momentum because they allow a relatively selective aggregation or even a specific self-assembly of the desired enzyme activity into insoluble particles in the absence of potentially denaturing chemicals required for precipitation and cross-linking. Recycling of insoluble protein particles for multiple rounds of batchwise reaction has been demonstrated in selected biotransformations. However, for application in a fully continuous biocatalytic process, low resistance to mechanical stress and high compressibility are issues for consideration on carrier-free enzyme particles.

Journal ArticleDOI
TL;DR: This review focuses on recent literature describing metagenomic approaches connecting sequence information to functionality that are especially relevant to biotechnological applications, including metagenomics of specialized or enriched microbial communities, meetagenomics combined with specific labeling techniques, metatranscriptomics and metaproteomics.
Abstract: A brief historical perspective on metagenomics is given followed by a discussion of the rapid progress in this field largely defined by transition to the next generation sequencing technologies. Problems and challenges connected to this transition are also addressed. The review focuses on recent literature describing metagenomic approaches connecting sequence information to functionality that are especially relevant to biotechnological applications, including metagenomics of specialized or enriched microbial communities, metagenomics combined with specific labeling techniques, metatranscriptomics and metaproteomics.

Journal ArticleDOI
TL;DR: The current state of research and challenges in mining novel cellulase genes from the metagenomes of various environments are covered, and the potential biotechnological applications of metagenome-derived cellulases are discussed.
Abstract: Cellulases hydrolyze the β-1,4 linkages of cellulose and are widely used in food, brewing and wine, animal feed, textiles and laundry, and pulp and paper industries, especially for hydrolyzing cellulosic materials into sugars, which can be fermented to produce useful products such as ethanol Metagenomics has become an alternative approach to conventional culture-dependent methods as it allows exhaustive mining of microbial genomes in their natural environments This review covers the current state of research and challenges in mining novel cellulase genes from the metagenomes of various environments, and discusses the potential biotechnological applications of metagenome-derived cellulases

Journal ArticleDOI
Huiling Cao1, Hui Qian1, Wenrong Xu1, Wei Zhu1, Xu Zhang1, Yuan Chen1, Mei Wang1, Yongming Yan1, Ying Xie1 
TL;DR: The transplanted UC-MSCs could reside in local injury sites, leading to the relief of hyperemia and inflammation, but no obvious transdifferentiation into renal-like cells, laying the foundation for further study on the potential application of UC- MSC in human disease.
Abstract: Mesenchymal stem cells (MSCs) are candidates for cell therapy of kidney diseases. However, the application of MSC derived from human umbilical cord (UC-MSC) in treating acute renal failure (ARF) has not been reported. UC-MSCs, 106, were transplantated via the left carotid artery into ARF rats which was established by clamping bilateral pedicles for 60 min and reperfusing. Serum creatinine and urea nitrogen decreased 4.8 times and 3.6 times as well as caspase-3 and IL-1β decreased 5.8 times and 9 times compared to control groups, respectively. The percent of proliferative cell nuclear antigen (PCNA)-positive cells (53% ± 7.5%) was higher than that in the control groups (17% ± 4.5%). In addition, the transplanted UC-MSCs could reside in local injury sites, leading to the relief of hyperemia and inflammation, but no obvious transdifferentiation into renal-like cells. The results lay the foundation for further study on the potential application of UC-MSC in human disease.

Journal ArticleDOI
Gan Wang1, Guangyuan Lu1, Qiang Ao1, Yandao Gong1, Xiufang Zhang1 
TL;DR: A successful nerve regeneration process was achieved with nerve repair tubes made up of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linked carboxymethyl chitosan (CM-chitOSan) with improved biodegradability.
Abstract: A successful nerve regeneration process was achieved with nerve repair tubes made up of 1-ethyl-3(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) cross-linked carboxymethyl chitosan (CM-chitosan) with improved biodegradability. Chitosan has a very slow degradation rate, while the EDC cross-linked CM-chitosan tubes degraded to 30% of original weight during 8 weeks of incubation in lysozyme solution. In vitro cell culture indicated that the CM-chitosan films presented no cytotoxicity to Schwann cells. From in vivo studies using a 10 mm rat sciatic nerve defect model investigated by histomorphometry analysis, the average diameter of the fibers and the average thickness of myelin sheath in the CM-chitosan tubes were 3.7 +/- 0.33 and 0.33 +/- 0.04 mum, respectively, which demonstrated equivalence to nerve autografts (the current "gold" standard); furthermore, the average fiber density in the CM-chitosan tubes was 20.5 x 10(3)/mm(2), which was similar to that of autografts (21 x 10(3)/mm(2)) and significantly higher than that of common chitosan tubes (15.3 x 10(3)/mm(2)).

Journal ArticleDOI
TL;DR: The current knowledge of the Flo1 protein is reviewed, with a strong emphasis towards its structure, and modern technologies to measure the forces involved in single carbohydrate-lectin interactions are discussed.
Abstract: Cell-cell adhesion occurs in a broad spectrum of biological processes, of which yeast flocculation is an area of interest for evolutionary scientists to brewers and winemakers. The flocculation mechanism is based on a lectin-carbohydrate interac- tion but is not yet fully understood, although the first model dates back to the 1950s. This review will update the current understanding of the complex mechanism behind yeast flocculation. Moreover, modern technol- ogies to measure the forces involved in single carbo- hydrate-lectin interactions, are discussed. The Flo1 protein has been extensively described as the protein responsible for strong flocculation. Recently, more research has been directed to the detailed analysis of this flocculin. Due to the advances in the field of bioinformatics, more information about Flo1p could be obtained via structurally or functionally related proteins. Here, we review the current knowledge of the Flo1 protein, with a strong emphasis towards its structure.

Journal ArticleDOI
TL;DR: The recent development of various membrane-based techniques for the purification of valuable natural products is reviewed and a special focus on the research that has been undertaken to overcome the membrane fouling encountered in their usage.
Abstract: The recent development of various membrane-based techniques for the purification of valuable natural products is reviewed and covers the important research that has been conducted in the last 5 years on the utilization of microfiltration, ultrafiltration and nanofiltration techniques, either carried out on their own or coupled with other separation techniques, in order to achieve concentration and purification of natural products from their biological source. There is also a special focus on the research that has been undertaken to overcome the membrane fouling encountered in their usage.

Journal ArticleDOI
TL;DR: In this article, salicylic acid (SA) was applied to Linum album cell cultures for three days to improve podophyllotoxin (PTOX) production up to 333 μg/g dry weight (DW).
Abstract: Treatment of Linum album cell cultures with 10 μM salicylic acid (SA) for 3 days improved podophyllotoxin (PTOX) production up to 333 μg/g dry weight (DW): over three times that of the control cultures. qPCR analyses showed that in SA-treated cells, the expression of the genes coding for phenylalanine ammonia-lyase (PAL), cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD), all involved in the first steps of PTOX biosynthesis, also increased reaching a peak 8-12 h after the treatment. Expression of the pinoresinol-lariciresinol reductase gene (PLR), which is involved in one of the last biosynthetic steps, was not affected by SA. The selective action of SA on these genes can be applied to control the biotechnological production of this anticancer agent.

Journal ArticleDOI
TL;DR: A strain of Bacillus coagulans that converted mixed sugars of glucose, xylose, and arabinose to l-lactic acid with 85% yield at 50°C with potential to be developed as a biocatalyst for the conversion of agricultural residues into valuable chemicals was isolated from composted dairy manure.
Abstract: A strain of Bacillus coagulans that converted mixed sugars of glucose, xylose, and arabinose to l-lactic acid with 85% yield at 50°C was isolated from composted dairy manure. The strain was tolerant to aldehyde growth inhibitors at 2.5 g furfural/l, 2.5 g 5-hydroxymethylfurfural/l, 2.5 g vanillin/l, and 1.2 g p-hydroxybenzaldehyde/l. In a simultaneous saccharification and fermentation process, the strain converted a dilute-acid hydrolysate of 100 g corn fiber/l to 39 g lactic acid/l in 72 h at 50°C. Because of its inhibitor tolerance and ability to fully utilize pentose sugars, this strain has potential to be developed as a biocatalyst for the conversion of agricultural residues into valuable chemicals.

Journal ArticleDOI
Zhichun Jia1, Yimin Sun1, Li Yuan1, Qiaoyan Tian1, Keming Luo1 
TL;DR: Bbchit1 overexpression enhanced disease resistance to C. chrysosperma in the transformed poplar plants, indicating that is gene is potentially useful to protect the trees against fungal diseases.
Abstract: The Chinese white poplar (Populus tomentosa Carr.) is susceptible to infection by plant diseases which severely affect its growth and substantially decrease its economic value. A chitinase gene (Bbchit1) from Beauveria bassiana was introduced into Chinese white poplar (Populus tomentosa Carr.) by Agrobacterium-mediated transformation. The T-DNA of plant transformation vector contained the β-glucuronidase reporter gene (GUS) under the control of CaMV 35S promoter and the neomycin phosphotransferase selection marker gene (NPTII) driven by the nos promoter. GUS activity was detected in most of the kanamycin-resistant plants tested. Stable integration of transgenes in the plant genome was confirmed using PCR. RT-PCR analysis showed that the Bbchit1 gene was transcribed in the transformed plants. When evaluated for resistance to poplar fungal pathogens with an in vitro assay, crude extracts from leaves and shoots of transgenic lines were inhibitory against the pathogenic fungus Cytospora chrysosperma (Pers.) Fr. Similarly, Bbchit1 overexpression enhanced disease resistance to C. chrysosperma in the transformed poplar plants, indicating that is gene is potentially useful to protect the trees against fungal diseases.

Journal ArticleDOI
TL;DR: Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased d-lactic acid concentrations suggesting the presence of cellobiase, and could be used to obtain d- lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.
Abstract: Three mutants, isolated by repeated UV mutagenesis of Lactobacillus lactis NCIM 2368, produced increased d-lactic acid concentrations. These mutants were compared with the wild type using 100 g hydrolyzed cane sugar/l in the fermentation medium. One mutant, RM2-24, produced 81 g lactic acid/l which was over three times that of the wild type. The highest d-lactic acid (110 g/l) in batch fermentation was obtained with 150 g cane sugar/l with a 73% lactic acid yield. The mutant utilizes cellobiose efficiently, converting it into d-lactic acid suggesting the presence of cellobiase. Thus, this strain could be used to obtain d-lactic acid from cellulosic materials that are pre-hydrolyzed with cellulase.

Journal ArticleDOI
TL;DR: The hypothesis that the NADPH-dependent reduction of furans by YqhD and DkgA inhibits growth by competing with biosynthesis for this limiting cofactor is supported.
Abstract: The ability of a biocatalyst to tolerate furan inhibitors present in hemicellulose hydrolysates is important for the production of renewable chemicals. This study shows EMFR9, a furfural-tolerant mutant of ethanologenic E. coli LY180, has also acquired tolerance to 5-hydroxymethyl furfural (5-HMF). The mechanism of action of 5-HMF and furfural appear similar. Furan tolerance results primarily from lower expression of yqhD and dkgA, two furan reductases with a low Km for NADPH. Furan tolerance was also increased by adding plasmids encoding a NADPH/NADH transhydrogenase (pntAB). Together, these results support the hypothesis that the NADPH-dependent reduction of furans by YqhD and DkgA inhibits growth by competing with biosynthesis for this limiting cofactor.

Journal ArticleDOI
TL;DR: A ZEN-degrading microorganism has been isolated and identified as a Bacillus subtilis subspecies, which can be used to decontaminate raw materials, like grains, to reduce the mycotoxin concentration.
Abstract: Zearalenone (ZEN) is a non-steroidal estrogen produced by many Fusarium species in cereals and other plants, and is frequently implicated in safety of foods and feeds. A ZEN-degrading microorganism has been isolated and identified as a Bacillus subtilis subspecies. It degraded 99% ZEN (1 mg kg−1) in liquid medium after 24 h and more than 95% of ZEN (0.25 mg kg−1) could be degraded after 48 h in a solid-state fermentation. This isolate can thus be used to decontaminate raw materials, like grains, to reduce the mycotoxin concentration.

Journal ArticleDOI
TL;DR: Here the current understanding of organofluorine catabolism in microorganisms is summarised.
Abstract: The carbon–fluorine bond is one of the strongest in nature, and the increasing use of organofluorine compounds in agriculture, human and veterinary medicine, and industry has raised concerns about their fate in the environment. Microorganisms can degrade organofluorine compounds, either via specific enzymatic hydrolysis of the C–F bond, or through transformation by catabolic enzymes with broad substrate specificities. Here our current understanding of organofluorine catabolism in microorganisms is summarised.

Journal ArticleDOI
TL;DR: Yeast extract was the most efficient enhancing plumbagin production in roots of D. burmanii to 8.8 ± 0.5 mg/g dry wt that was 3.5-fold higher than control plants.
Abstract: Methyl jasmonate, 50 μM, 0.5 mg yeast extract/l and 100 mg chitosan/l stimulated plumbagin production in Drosera burmanii whole plant cultures after 6 days of elicitation. Yeast extract (0.5 mg/l) was the most efficient enhancing plumbagin production in roots of D. burmanii to 8.8 ± 0.5 mg/g dry wt that was 3.5-fold higher than control plants.

Journal ArticleDOI
TL;DR: It is concluded that the high levels of 2-Cys Prx proteins in transgenic plants protect leaves from oxidative damage probably due to chaperon activity.
Abstract: Plant 2-Cys peroxiredoxins (2-Cys Prx) has both peroxidase and chaperon function. We overexpressed an Arabidopsis 2-Cys Prx in transgenic tall fescue (Festuca arundinacea) plants to confer tolerance against heat and methyl viologen (MV) stress. Transgenic plants were generated by Agrobacterium-mediated genetic transformation, and integration and expression of the transgene was confirmed by Southern, northern and western blot analyses. Compared to control plants, transgenic plants had significantly less electrolyte leakage and thiobarbituric acid-reactive substances (TBARS) when exposed to heat or MV. Under heat stress (42°C), transgenic plants maintained their chlorophyll fluorescence (Fv/Fm) for 24 h while control plants lost chlorophyll fluorescence very quickly. We conclude that the high levels of 2-Cys Prx proteins in transgenic plants protect leaves from oxidative damage probably due to chaperon activity.

Journal ArticleDOI
TL;DR: The lipase of Pseudomonas cepacia was immobilized onto electrospun polyacrylonitrile (PAN) fibers and used for the conversion of (S)-glycidol with vinyl n- butyrate to glycidyl n-butyrate in isooctane and the rate of reaction with the adsorbed lipase was 23-fold higher than the initial material.
Abstract: The lipase of Pseudomonas cepacia was immobilized onto electrospun polyacrylonitrile (PAN) fibers and used for the conversion of (S)-glycidol with vinyl n-butyrate to glycidyl n-butyrate in isooctane. The rate of reaction with the adsorbed lipase was 23-fold higher than the initial material. After 10 recyclings, the initial reaction rate was 80% of the original rate. This system of enzyme immobilization is therefore suitable for carrying out transesterification reactions in nonaqueous solvents.