scispace - formally typeset
Search or ask a question

Showing papers in "Breast Cancer Research in 2009"


Journal ArticleDOI
TL;DR: A role for CDK4/6 inhibition in some breast cancers is suggested and criteria for patient selection in clinical studies of PD 0332991 is identified.
Abstract: Introduction Alterations in cell cycle regulators have been implicated in human malignancies including breast cancer. PD 0332991 is an orally active, highly selective inhibitor of the cyclin D kinases (CDK)4 and CDK6 with ability to block retinoblastoma (Rb) phosphorylation in the low nanomolar range. To identify predictors of response, we determined the in vitro sensitivity to PD 0332991 across a panel of molecularly characterized human breast cancer cell lines. Methods Forty-seven human breast cancer and immortalized cell lines representing the known molecular subgroups of breast cancer were treated with PD 0332991 to determine IC50 values. These data were analyzed against baseline gene expression data to identify genes associated with PD 0332991 response.

1,169 citations


Journal ArticleDOI
TL;DR: The authors' data indicate that a major proportion of CTC of metastatic breast cancer patients shows EMT and tumor stem cell characteristics, and further studies are needed to prove whether these markers might serve as an indicator for therapy resistant tumor cell populations and, therefore, an inferior prognosis.
Abstract: The persistence of circulating tumor cells (CTC) in breast cancer patients might be associated with stem cell like tumor cells which have been suggested to be the active source of metastatic spread in primary tumors. Furthermore, these cells also may undergo phenotypic changes, known as epithelial-mesenchymal transition (EMT), which allows them to travel to the site of metastasis formation without getting affected by conventional treatment. Here we evaluated 226 blood samples of 39 metastatic breast cancer patients during a follow-up of palliative chemo-, antibody – or hormonal therapy for the expression of the stem cell marker ALDH1 and markers for EMT and correlated these findings with the presence of CTC and response to therapy. 2 × 5 ml blood was analyzed for CTC with the AdnaTest BreastCancer (AdnaGen AG) for the detection of EpCAM, MUC-1 and HER2 transcripts. The recovered c-DNA was additionally multiplex tested for three EMT markers [Twist1, Akt2, PI3Kα] and separately for the tumor stem-cell markers ALDH1. The identification of EMT markers was considered positive if at least one marker was detected in the sample. 97% of 30 healthy donor samples investigated were negative for EMT and 95% for ALDH1 transcripts. CTC were detected in 69/226 (31%) cancer samples. In the CTC (+) group, 62% were positive for at least one of the EMT markers and 69% for ALDH1, respectively. In the CTC (-) group the percentages were 7% and 14%, respectively. In non-responders, EMT and ALDH1 expression was found in 62% and 44% of patients, in responders the rates were 10% and 5%, respectively. Our data indicate that a major proportion of CTC of metastatic breast cancer patients shows EMT and tumor stem cell characteristics. Further studies are needed to prove whether these markers might serve as an indicator for therapy resistant tumor cell populations and, therefore, an inferior prognosis.

714 citations


Journal ArticleDOI
TL;DR: The results suggest that the tumor microenvironment participates in tumorigenesis even before tumor cells invade into stroma, and that it may play important roles in the transition from preinvasive to invasive growth.
Abstract: The importance of the tumor microenvironment in breast cancer has been increasingly recognized. Critical molecular changes in the tumor stroma accompanying cancer progression, however, remain largely unknown. We conducted a comparative analysis of global gene expression changes in the stromal and epithelial compartments during breast cancer progression from normal to preinvasive to invasive ductal carcinoma. We combined laser capture microdissection and gene expression microarrays to analyze 14 patient-matched normal epithelium, normal stroma, tumor epithelium and tumor-associated stroma specimens. Differential gene expression and gene ontology analyses were performed. Tumor-associated stroma undergoes extensive gene expression changes during cancer progression, to a similar extent as that seen in the malignant epithelium. Highly upregulated genes in the tumor-associated stroma include constituents of the extracellular matrix and matrix metalloproteases, and cell-cycle-related genes. Decreased expression of cytoplasmic ribosomal proteins and increased expression of mitochondrial ribosomal proteins were observed in both the tumor epithelium and the stroma. The transition from preinvasive to invasive growth was accompanied by increased expression of several matrix metalloproteases (MMP2, MMP11 and MMP14). Furthermore, as observed in malignant epithelium, a gene expression signature of histological tumor grade also exists in the stroma, with high-grade tumors associated with increased expression of genes involved in immune response. Our results suggest that the tumor microenvironment participates in tumorigenesis even before tumor cells invade into stroma, and that it may play important roles in the transition from preinvasive to invasive growth. The immune cells in the tumor stroma may be exploited by the malignant epithelial cells in high-grade tumors for aggressive invasive growth.

598 citations


Journal ArticleDOI
TL;DR: This study demonstrates that ANN analysis reliably identifies biologically relevant miRNAs associated with specific breast cancer phenotypes and indicates that dysregulated miRNA expression could be a marker for poorer prognosis breast cancer, but that it could also present an attractive target for therapeutic intervention.
Abstract: Breast cancer is a heterogeneous disease encompassing a number of phenotypically diverse tumours. Expression levels of the oestrogen, progesterone and HER2/neu receptors which characterize clinically distinct breast tumours have been shown to change during disease progression and in response to systemic therapies. Mi(cro)RNAs play critical roles in diverse biological processes and are aberrantly expressed in several human neoplasms including breast cancer, where they function as regulators of tumour behaviour and progression. The aims of this study were to identify miRNA signatures that accurately predict the oestrogen receptor (ER), progesterone receptor (PR) and HER2/neu receptor status of breast cancer patients to provide insight into the regulation of breast cancer phenotypes and progression. Expression profiling of 453 miRNAs was performed in 29 early-stage breast cancer specimens. miRNA signatures associated with ER, PR and HER2/neu status were generated using artificial neural networks (ANN), and expression of specific miRNAs was validated using RQ-PCR. Stepwise ANN analysis identified predictive miRNA signatures corresponding with oestrogen (miR-342, miR-299, miR-217, miR-190, miR-135b, miR-218), progesterone (miR-520g, miR-377, miR-527-518a, miR-520f-520c) and HER2/neu (miR-520d, miR-181c, miR-302c, miR-376b, miR-30e) receptor status. MiR-342 and miR-520g expression was further analysed in 95 breast tumours. MiR-342 expression was highest in ER and HER2/neu-positive luminal B tumours and lowest in triple-negative tumours. MiR-520g expression was elevated in ER and PR-negative tumours. This study demonstrates that ANN analysis reliably identifies biologically relevant miRNAs associated with specific breast cancer phenotypes. The association of specific miRNAs with ER, PR and HER2/neu status indicates a role for these miRNAs in disease classification of breast cancer. Decreased expression of miR-342 in the therapeutically challenging triple-negative breast tumours, increased miR-342 expression in the luminal B tumours, and downregulated miR-520g in ER and PR-positive tumours indicates that not only is dysregulated miRNA expression a marker for poorer prognosis breast cancer, but that it could also present an attractive target for therapeutic intervention.

445 citations


Journal ArticleDOI
TL;DR: Precise definitions of the specific subtypes of immune cells in the tumor can be accomplished from microarray data, and all known prognostic gene signatures uniformly assign poor prognosis to all ER-negative tumors.
Abstract: Lymphocyte infiltration (LI) is often seen in breast cancer but its importance remains controversial. A positive correlation of human epidermal growth factor receptor 2 (HER2) amplification and LI has been described, which was associated with a more favorable outcome. However, specific lymphocytes might also promote tumor progression by shifting the cytokine milieu in the tumor. Affymetrix HG-U133A microarray data of 1,781 primary breast cancer samples from 12 datasets were included. The correlation of immune system-related metagenes with different immune cells, clinical parameters, and survival was analyzed. A large cluster of nearly 600 genes with functions in immune cells was consistently obtained in all datasets. Seven robust metagenes from this cluster can act as surrogate markers for the amount of different immune cell types in the breast cancer sample. An IgG metagene as a marker for B cells had no significant prognostic value. In contrast, a strong positive prognostic value for the T-cell surrogate marker (lymphocyte-specific kinase (LCK) metagene) was observed among all estrogen receptor (ER)-negative tumors and those ER-positive tumors with a HER2 overexpression. Moreover ER-negative tumors with high expression of both IgG and LCK metagenes seem to respond better to neoadjuvant chemotherapy. Precise definitions of the specific subtypes of immune cells in the tumor can be accomplished from microarray data. These surrogate markers define subgroups of tumors with different prognosis. Importantly, all known prognostic gene signatures uniformly assign poor prognosis to all ER-negative tumors. In contrast, the LCK metagene actually separates the ER-negative group into better or worse prognosis.

365 citations


Journal ArticleDOI
TL;DR: These observations suggest that investigators should consider tumor heterogeneity in associations with traditional breast cancer risk factors, and important modifiable lifestyle factors that may be related to the development of a specific tumor subtype, but not all subtypes, include obesity, breastfeeding, and alcohol consumption.
Abstract: The aim of this study was to describe breast tumor subtypes by common breast cancer risk factors and to determine correlates of subtypes using baseline data from two pooled prospective breast cancer studies within a large health maintenance organization. Tumor data on 2544 invasive breast cancer cases subtyped by estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (Her2) status were obtained (1868 luminal A tumors, 294 luminal B tumors, 288 triple-negative tumors and 94 Her2-overexpressing tumors). Demographic, reproductive and lifestyle information was collected either in person or by mailed questionnaires. Case-only odds ratios (ORs) and 95% confidence intervals (CIs) were estimated using logistic regression, adjusting for age at diagnosis, race/ethnicity, and study origin. Compared with luminal A cases, luminal B cases were more likely to be younger at diagnosis (P = 0.0001) and were less likely to consume alcohol (OR = 0.74, 95% CI = 0.56 to 0.98), use hormone replacement therapy (HRT) (OR = 0.66, 95% CI = 0.46 to 0.94), and oral contraceptives (OR = 0.73, 95% CI = 0.55 to 0.96). Compared with luminal A cases, triple-negative cases tended to be younger at diagnosis (P ≤ 0.0001) and African American (OR = 3.14, 95% CI = 2.12 to 4.16), were more likely to have not breastfed if they had parity greater than or equal to three (OR = 1.68, 95% CI = 1.00 to 2.81), and were more likely to be overweight (OR = 1.82, 95% CI = 1.03 to 3.24) or obese (OR = 1.97, 95% CI = 1.03 to 3.77) if premenopausal. Her2-overexpressing cases were more likely to be younger at diagnosis (P = 0.03) and Hispanic (OR = 2.19, 95% CI = 1.16 to 4.13) or Asian (OR = 2.02, 95% CI = 1.05 to 3.88), and less likely to use HRT (OR = 0.45, 95% CI = 0.26 to 0.79). These observations suggest that investigators should consider tumor heterogeneity in associations with traditional breast cancer risk factors. Important modifiable lifestyle factors that may be related to the development of a specific tumor subtype, but not all subtypes, include obesity, breastfeeding, and alcohol consumption. Future work that will further categorize triple-negative cases into basal and non-basal tumors may help to elucidate these associations further.

327 citations


Journal ArticleDOI
TL;DR: The role of epithelial-mesenchymal plasticity in breast cancer metastasis is discussed in this article, where epithelial carcinoma cells within a primary tumor acquire mesenchyal features and re-epithelialize to form a cohesive secondary mass at a metastatic site.
Abstract: Epithelial-mesenchymal plasticity in breast carcinoma encompasses the phenotypic spectrum whereby epithelial carcinoma cells within a primary tumor acquire mesenchymal features and re-epithelialize to form a cohesive secondary mass at a metastatic site. Such plasticity has implications in progression of breast carcinoma to metastasis, and will likely influence response to therapy. The transcriptional and epigenetic regulation of molecular and cellular processes that underlie breast cancer and result in characteristic changes in cell behavior can be monitored using an increasing array of marker proteins. Amongst these markers exists the potential for emergent prognostic, predictive and therapeutic targeting.

282 citations


Journal ArticleDOI
TL;DR: The potential impact of next-generation sequencing on breast cancer research and the challenges that come with this technological breakthrough are discussed.
Abstract: Next-generation sequencing (also known as massively parallel sequencing) technologies are revolutionising our ability to characterise cancers at the genomic, transcriptomic and epigenetic levels. Cataloguing all mutations, copy number aberrations and somatic rearrangements in an entire cancer genome at base pair resolution can now be performed in a matter of weeks. Furthermore, massively parallel sequencing can be used as a means for unbiased transcriptomic analysis of mRNAs, small RNAs and noncoding RNAs, genome-wide methylation assays and high-throughput chromatin immunoprecipitation assays. Here, I discuss the potential impact of this technology on breast cancer research and the challenges that come with this technological breakthrough.

264 citations


Journal ArticleDOI
TL;DR: The biology of the primary tumor seems to direct the spread of CTCs and the consequence for the selection of adjuvant treatment has to be evaluated because of the weak concordance between C TCs and DTCs.
Abstract: The role of circulating tumor cells (CTCs) in blood of primary breast cancer patients is still under investigation. We evaluated the incidence of CTCs in blood, we evaluated the correlation between CTCs and disseminated tumor cells (DTCs) in the bone marrow (BM), and we characterized CTCs for the expression of HER2, the estrogen receptor (ER) and the progesterone receptor (PR). Blood of 431 patients with primary breast cancer were analyzed for EpCAM, MUC1 and HER2 transcripts with the AdnaTest BreastCancer™ (AdnaGen AG, Germany). Expression of the ER and PR was assessed in an additional RT-PCR. BM aspirates from 414 patients were analyzed for DTCs by immunocytochemistry using the pan-cytokeratin antibody A45-B/B3. DTCs were found in 107/414 patients (24%), CTCs were detected in 58/431 (13%) patients. DTCs were associated with PR status of the primary tumor (P = 0.04) and CTCs significantly correlated with nodal status (P = 0.04), ER (P = 0.05), and PR (P = 0.01). DTCs in the BM weakly correlated with CTCs (P = 0.05) in blood. Interestingly, the spread of CTCs was mostly found in triple-negative tumors (P = 0.01) and CTCs in general were mostly found to be triple-negative regardless of the ER, PR and HER2 status of the primary tumor. (1) Due to the weak concordance between CTCs and DTCs the clinical relevance may be different. (2) The biology of the primary tumor seems to direct the spread of CTCs. (3) Since the expression profile between CTCs and the primary tumor differs, the consequence for the selection of adjuvant treatment has to be evaluated.

249 citations


Journal ArticleDOI
TL;DR: Breast cancer cells can be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine).
Abstract: The link between estrogen and the development and proliferation of breast cancer is well documented. Estrogen stimulates growth and inhibits apoptosis through estrogen receptor-mediated mechanisms in many cell types. Interestingly, there is strong evidence that estrogen induces apoptosis in breast cancer and other cell types. Forty years ago, before the development of tamoxifen, high-dose estrogen was used to induce tumor regression of hormone-dependent breast cancer in post-menopausal women. While the mechanisms by which estrogen induces apoptosis were not completely known, recent evidence from our laboratory and others demonstrates the involvement of the extrinsic (Fas/FasL) and the intrinsic (mitochondria) pathways in this process. We discuss the different apoptotic signaling pathways involved in E2 (17β-estradiol)-induced apoptosis, including the intrinsic and extrinsic apoptosis pathways, the NF-κB (nuclear factor-kappa-B)-mediated survival pathway as well as the PI3K (phosphoinositide 3-kinase)/Akt signaling pathway. Breast cancer cells can also be sensitized to estrogen-induced apoptosis through suppression of glutathione by BSO (L-buthionine sulfoximine). This finding has implications for the control of breast cancer with low-dose estrogen and other targeted therapeutic drugs.

243 citations


Journal ArticleDOI
TL;DR: Black women of diverse background have 3-fold more Tneg tumours than non-black women, regardless of age and BMI, which likely contributes to black women's unfavorable breast cancer prognosis.
Abstract: We investigated clinical and pathologic features of breast cancers (BC) in an unselected series of patients diagnosed in a tertiary care hospital serving a diverse population. We focused on triple-negative (Tneg) tumours (oestrogen receptor (ER), progesterone receptor (PR) and HER2 negative), which are associated with poor prognosis. We identified female patients with invasive BC diagnosed between 1998 and 2006, with data available on tumor grade, stage, ER, PR and HER2 status, and patient age, body mass index (BMI) and self-identified racial/ethnic group. We determined associations between patient and tumour characteristics using contingency tables and multivariate logistic regression. 415 cases were identified. Patients were racially and ethnically diverse (born in 44 countries, 36% white, 43% black, 10% Hispanic and 11% other). 47% were obese (BMI > 30 kg/m2). 72% of tumours were ER+ and/or PR+, 20% were Tneg and 13% were HER2+. The odds of having a Tneg tumour were 3-fold higher (95% CI 1.6, 5.5; p = 0.0001) in black compared with white women. Tneg tumours were equally common in black women diagnosed before and after age 50 (31% vs 29%; p = NS), and who were obese and non-obese (29% vs 31%; p = NS). Considering all patients, as BMI increased, the proportion of Tneg tumours decreased (p = 0.08). Black women of diverse background have 3-fold more Tneg tumours than non-black women, regardless of age and BMI. Other factors must determine tumour subtype. The higher prevalence of Tneg tumours in black women in all age and weight categories likely contributes to black women's unfavorable breast cancer prognosis.

Journal ArticleDOI
TL;DR: The intraductal HIM transplantation model provides an invaluable tool that mimics human breast heterogeneity at the noninvasive stages and allows the study of the distinct molecular and cellular mechanisms of breast cancer progression.
Abstract: Human models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied. To accomplish this goal, the intraductal human-in-mouse (HIM) transplantation model was developed. The resulting models, which mimicked some of the diversity of human noninvasive breast cancers in vivo, were used to show whether subtypes of human DCIS might contain distinct subpopulations of tumor-initiating cells. The intraductal models were established by injection of human DCIS cell lines (MCF10DCIS.COM and SUM-225), as well as cells derived from a primary human DCIS (FSK-H7), directly into the primary mouse mammary ducts via cleaved nipple. Six to eight weeks after injections, whole-mount, hematoxylin and eosin, and immunofluorescence staining were performed to evaluate the type and extent of growth of the DCIS-like lesions. To identify tumor-initiating cells, putative human breast stem/progenitor subpopulations were sorted from MCF10DCIS.COM and SUM-225 with flow cytometry, and their in vivo growth fractions were compared with the Fisher's Exact test. Human DCIS cells initially grew within the mammary ducts, followed by progression to invasion in some cases into the stroma. The lesions were histologically almost identical to those of clinical human DCIS. This method was successful for growing DCIS cell lines (MCF10DCIS.COM and SUM-225) as well as a primary human DCIS (FSK-H7). MCF10DCIS.COM represented a basal-like DCIS model, whereas SUM-225 and FSK-H7 cells were models for HER-2+ DCIS. With this approach, we showed that various subtypes of human DCIS appeared to contain distinct subpopulations of tumor-initiating cells. The intraductal HIM transplantation model provides an invaluable tool that mimics human breast heterogeneity at the noninvasive stages and allows the study of the distinct molecular and cellular mechanisms of breast cancer progression.

Journal ArticleDOI
TL;DR: Full-length CK19 is released by viable epithelial tumor cells, and CK19-RCs might constitute a biologically active subset of breast cancer cells with high metastatic properties.
Abstract: Introduction We evaluated whether CK19, one of the main cytoskeleton proteins of epithelial cells, is released as full-length protein from viable tumor cells and whether this property is relevant for metastatic progression in breast cancer patients. Methods EPISPOT (EPithelial ImmunoSPOT) assays were performed to analyze the release of full-length CK19 by carcinoma cells of various origins, and the sequence of CK19 was analyzed with mass spectrometry. Additional functional experiments with cycloheximide, Brefeldin A, or vincristine were done to analyze the biology of the CK19-release. CK19EPISPOT was used to detect disseminated tumor cells in bone marrow (BM) of 45 breast cancer patients who were then followed up over a median of 6 years.

Journal ArticleDOI
TL;DR: The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago as discussed by the authors, and there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer.
Abstract: The contribution of transforming growth factor (TGF)β to breast cancer has been studied from a myriad perspectives since seminal studies more than two decades ago. Although the action of TGFβ as a canonical tumor suppressor in breast is without a doubt, there is compelling evidence that TGFβ is frequently subverted in a malignant plexus that drives breast cancer. New knowledge that TGFβ regulates the DNA damage response, which underlies cancer therapy, reveals another facet of TGFβ biology that impedes cancer control. Too much TGFβ, too late in cancer progression is the fundamental motivation for pharmaceutical inhibition.

Journal ArticleDOI
TL;DR: A literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia found that addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation.
Abstract: Androgens have important physiological effects in women while at the same time they may be implicated in breast cancer pathologies. However, data on the effects of androgens on mammary epithelial proliferation and/or breast cancer incidence are not in full agreement. We performed a literature review evaluating current clinical, genetic and epidemiological data regarding the role of androgens in mammary growth and neoplasia. Epidemiological studies appear to have significant methodological limitations and thus provide inconclusive results. The study of molecular defects involving androgenic pathways in breast cancer is still in its infancy. Clinical and nonhuman primate studies suggest that androgens inhibit mammary epithelial proliferation and breast growth while conventional estrogen treatment suppresses endogenous androgens. Abundant clinical evidence suggests that androgens normally inhibit mammary epithelial proliferation and breast growth. Suppression of androgens using conventional estrogen treatment may thus enhance estrogenic breast stimulation and possibly breast cancer risk. Addition of testosterone to the usual hormone therapy regimen may diminish the estrogen/progestin increase in breast cancer risk but the impact of this combined use on mammary gland homeostasis still needs evaluation.

Journal ArticleDOI
TL;DR: The influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion, is reviewed and the importance of these MAPK-centred signalling cascades during the cycle of Mammary gland development is considered.
Abstract: Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development.

Journal ArticleDOI
TL;DR: FoxA1 was a significant predictor of good outcome in breast cancer, whereas GATA-3 was an important luminal marker, and may be used for risk stratification among ERα-negative patients.
Abstract: The expression of additional genes, other than oestrogen receptor (ER), may be important to the hormone-responsive phenotype of breast cancer. Microarray analyses have revealed that forkhead box A1 (FOXA1) and GATA binding protein 3 (GATA-3) are expressed in close association with ERα, both encoding for transcription factors with a potential involvement in the ERα-mediated action in breast cancer. The purpose of this study was to explore if the expression of FOXA1 and GATA-3 may provide an opportunity to stratify subsets of patients that could have better outcome, among the ERα-negative/poor prognosis breast cancer group. We evaluate FOXA1 and GATA-3 expression in 249 breast carcinomas by immunohistochemistry, associating it with breast cancer molecular markers, clinicopathological features and patient's survival. The clinicopathological features and immunohistochemical markers of the tumours were compared using the chi-square test and ANOVA. Disease-free survival was analysed through Kaplan–Meier survival curves and Cox regression. FOXA1 expression was demonstrated in 42% of invasive carcinomas, while GATA-3 was detected in 48% of the cases. FOXA1 expression was inversely associated with tumour size, Nottingham Prognostic Index, histological grade, lymph vascular invasion, lymph node stage and human epidermal growth factor receptor-2 (HER-2) overexpression, while GATA-3 expression showed inverse association with histological grade and HER-2. Both FOXA1 and GATA-3 were directly associated with ERα and progesterone receptor. Among FOXA1-positive tumours, 83.1% are comprised in the luminal A subtype, similar to GATA-3 where 87.7% of positive tumours were classified within this molecular subtype. In the subset of ERα-negative patients, those who were FOXA1-negative had a 3.61-fold increased risk of breast cancer recurrence when compared with the FOXA1-positive. FOXA1 was a significant predictor of good outcome in breast cancer, whereas GATA-3 was an important luminal marker. The expression of FOXA1 may be used for risk stratification among ERα-negative patients.

Journal ArticleDOI
TL;DR: Results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells, and suggest that interference with WNT signaling using sFRP1 to block the ligand- receptor interaction may be a valid therapeutic approach in breast cancer.
Abstract: In breast cancer, deregulation of the WNT signaling pathway occurs by autocrine mechanisms. WNT ligands and Frizzled receptors are coexpressed in primary breast tumors and cancer cell lines. Moreover, many breast tumors show hypermethylation of the secreted Frizzled-related protein 1 (sFRP1) promoter region, causing low expression of this WNT antagonist. We have previously shown that the WNT pathway influences proliferation of breast cancer cell lines via activation of canonical signaling and epidermal growth factor receptor transactivation, and that interference with WNT signaling reduces proliferation. Here we examine the role of WNT signaling in breast tumor cell migration and on xenograft outgrowth. The breast cancer cell line MDA-MB-231 was used to study WNT signaling. We examined the effects of activating or blocking the WNT pathway on cell motility by treatment with WNT ligands or by ectopic sFPR1 expression, respectively. The ability of sFRP1-expressing MDA-MB-231 cells to grow as xenografts was also tested. Microarray analyses were carried out to identify targets with roles in MDA-MB-231/sFRP1 tumor growth inhibition. We show that WNT stimulates the migratory ability of MDA-MB-231 cells. Furthermore, ectopic expression of sFRP1 in MDA-MB-231 cells blocks canonical WNT signaling and decreases their migratory potential. Moreover, the ability of MDA-MB-231/sFRP1-expressing cells to grow as xenografts in mammary glands and to form lung metastases is dramatically impaired. Microarray analyses led to the identification of two genes, CCND1 and CDKN1A, whose expression level is selectively altered in vivo in sFRP1-expressing tumors. The encoded proteins cyclin D1 and p21Cip1 were downregulated and upregulated, respectively, in sFRP1-expressing tumors, suggesting that they are downstream mediators of WNT signaling. Our results show that the WNT pathway influences multiple biological properties of MDA-MB-231 breast cancer cells. WNT stimulates tumor cell motility; conversely sFRP1-mediated WNT pathway blockade reduces motility. Moreover, ectopic sFRP1 expression in MDA-MB-231 cells has a strong negative impact on tumor outgrowth and blocked lung metastases. These results suggest that interference with WNT signaling using sFRP1 to block the ligand- receptor interaction may be a valid therapeutic approach in breast cancer.

Journal ArticleDOI
TL;DR: An essential function for FAK is identified in mediating the interaction between β3 integrin and TβR-II, and thus in facilitating the oncogenic conversion of TGF-β required for mammary tumor metastasis.
Abstract: Introduction Mammary tumorigenesis is associated with the increased expression of several proteins in the focal adhesion complex, including focal adhesion kinase (FAK) and various integrins. Aberrant expression of these molecules occurs concomitant with the conversion of TGF-β function from a tumor suppressor to a tumor promoter. We previously showed that interaction between β3 integrin and TβR-II facilitates TGF-β-mediated oncogenic signaling, epithelial-mesenchymal transition (EMT), and metastasis. However, the molecular mechanisms by which the focal adhesion complex contributes to β3 integrin:TβR-II signaling and the oncogenic conversion of TGF-β remain poorly understood.

Journal ArticleDOI
TL;DR: The results suggest that B RCA1- and BRCA2-related tumours develop largely through distinct genetic pathways in terms of the regions altered while also displaying distinct phenotypes, and suggest the potential benefit from targeted therapy through the use of agents leading to DNA double-strand breaks such as PARP inhibitors and cisplatin.
Abstract: Germline mutations in the BRCA1 and BRCA2 genes account for a considerable fraction of familial predisposition to breast cancer. Somatic mutations in BRCA1 and BRCA2 have not been found and the involvement of these genes in sporadic tumour development therefore remains unclear. The study group consisted of 67 primary breast tumours with and without BRCA1 or BRCA2 abnormalities. Genomic alterations were profiled by high-resolution (~7 kbp) comparative genome hybridisation (CGH) microarrays. Tumour phenotypes were analysed by immunohistochemistry on tissue microarrays using selected biomarkers (ER, PR, HER-2, EGFR, CK5/6, CK8, CK18). Classification of genomic profiles through cluster analysis revealed four subgroups, three of which displayed high genomic instability indices (GII). Two of these GII-high subgroups were enriched with either BRCA1- or BRCA2-related tumours whereas the third was not BRCA-related. The BRCA1-related subgroup mostly displayed non-luminal phenotypes, of which basal-like were most prominent, whereas the other two genomic instability subgroups BRCA2- and GII-high-III (non-BRCA), were almost entirely of luminal phenotype. Analysis of genome architecture patterns revealed similarities between the BRCA1- and BRCA2 subgroups, with long deletions being prominent. This contrasts with the third instability subgroup, not BRCA-related, where small gains were more prominent. The results suggest that BRCA1- and BRCA2-related tumours develop largely through distinct genetic pathways in terms of the regions altered while also displaying distinct phenotypes. Importantly, we show that the development of a subset of sporadic tumours is similar to that of either familial BRCA1- or BRCA2 tumours. Despite their differences, we observed clear similarities between the BRCA1- and BRCA2-related subgroups reflected in the type of genomic alterations acquired with deletions of long DNA segments being prominent. This suggests similarities in the mechanisms promoting genomic instability for BRCA1- and BRCA2-associated tumours, possibly relating to deficiency in DNA repair through homologous recombination. Indeed, this feature characterized both familial and sporadic tumours displaying BRCA1- or BRCA2-like spectrums of genomic alterations. The importance of these findings lies in the potential benefit from targeted therapy, through the use of agents leading to DNA double-strand breaks such as PARP inhibitors (olaparib) and cisplatin, for a much larger group of patients than the few BRCA1 and BRCA2 germline mutation carriers.

Journal ArticleDOI
TL;DR: This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer.
Abstract: Myc has been intensely studied since its discovery more than 25 years ago. Insight has been gained into Myc's function in normal physiology, where its role appears to be organ specific, and in cancer where many mechanisms contribute to aberrant Myc expression. Numerous signals and pathways converge on Myc, which in turn acts on a continuously growing number of identified targets, via transcriptional and nontranscriptional mechanisms. This review will concentrate on Myc as a signaling mediator in the mammary gland, discussing its regulation and function during normal development, as well as its activation and roles in breast cancer.

Journal ArticleDOI
TL;DR: The results are suggestive of a critical role of homeobox gene methylation in the insurgence and/or progression of breast cancer.
Abstract: Aberrant methylation of CpG islands is a hallmark of cancer and occurs at an early stage in breast tumorigenesis However, its impact on tumor development is not fully determined, and its potential as a diagnostic biomarker remains to be validated Methylation profiling of invasive breast carcinoma has been largely explored Conversely, very little and sparse information is available on early-stage breast cancer To gain insight into the epigenetic switches that may promote and/or contribute to the initial neoplastic events during breast carcinogenesis, we have analyzed the DNA methylation profile of ductal carcinoma in situ, a premalignant breast lesion with a great potential to progress toward invasive carcinoma We have utilized a comprehensive and sensitive array-based DNA mapping technique, the methylated-CpG island recovery assay, to profile the DNA methylation pattern in ductal carcinoma in situ Differential methylation of CpG islands was compared genome-wide in tumor DNA versus normal DNA utilizing a statistical linear model in the LIMMA software package Using this approach, we have identified 108 significant CpG islands that undergo aberrant DNA methylation in ductal carcinoma in situ and stage I breast tumors, with methylation frequencies greater than or comparable with those of more advanced invasive carcinoma (50% to 93%) A substantial fraction of these hypermethylated CpG islands (32% of the annotated CpG islands) is associated with several homeobox genes, such as the TLX1, HOXB13, and HNF1B genes Fifty-three percent of the genes hypermethylated in early-stage breast cancer overlap with known Polycomb targets and include homeobox genes and other developmental transcription factors We have identified a series of new potential methylation biomarkers that may help elucidate the underlying mechanisms of breast tumorigenesis More specifically, our results are suggestive of a critical role of homeobox gene methylation in the insurgence and/or progression of breast cancer

Journal ArticleDOI
TL;DR: It is demonstrated that noninvasive, epithelial-like CD44posCD24pos cells readily give rise to invasive, mesenchymal CD44POSCD24neg progeny in vivo and in vitro, and that therapies targetingCD44pos CD24neg tumor cells may have limited success in preventing primary tumor metastasis unless Activin/Nodal signaling is arrested.
Abstract: The invasive, mesenchymal phenotype of CD44posCD24neg breast cancer cells has made them a promising target for eliminating the metastatic capacity of primary tumors. It has been previously demonstrated that CD44neg/lowCD24pos breast cancer cells lack the ability to give rise to their invasive CD44posCD24neg counterpart. Here we demonstrate that noninvasive, epithelial-like CD44posCD24pos cells readily give rise to invasive, mesenchymal CD44posCD24neg progeny in vivo and in vitro. This interconversion was found to be dependent upon Activin/Nodal signaling. Breast cancer cell lines were sorted into CD44posCD24pos and CD44posCD24neg populations to evaluate their progeny for the expression of CD44, CD24, and markers of a mesenchymal phenotype. The populations, separated by fluorescence activated cell sorting (FACS) were injected into immunocompromised mice to evaluate their tumorigenicity and invasiveness of the resulting xenografts. CD24 expression was dynamically regulated in vitro in all evaluated breast cancer cell lines. Furthermore, a single noninvasive, epithelial-like CD44posCD24pos cell had the ability to give rise to invasive, mesenchymal CD44posCD24neg progeny. Importantly, this interconversion occurred in vivo as CD44posCD24pos cells gave rise to xenografts with locally invasive borders as seen in xenografts initiated with CD44posCD24neg cells. Lastly, the ability of CD44posCD24pos cells to give rise to mesenchymal progeny, and vice versa, was blocked upon ablation of Activin/Nodal signaling. Our data demonstrate that the invasive, mesenchymal CD44posCD24neg phenotype is under dynamic control in breast cancer cell lines both in vitro and in vivo. Furthermore, our observations suggest that therapies targeting CD44posCD24neg tumor cells may have limited success in preventing primary tumor metastasis unless Activin/Nodal signaling is arrested.

Journal ArticleDOI
TL;DR: The combination of in vitro functional studies with the analysis of gene expression in clinical breast cancer samples indicates that three functionally interconnected genes, Fau, Bcl-G and MELK, are crucially important in Breast cancer and identifies them as attractive targets for improvements in breast cancer risk prediction, prognosis and therapy.
Abstract: Programmed cell death through apoptosis plays an essential role in the hormone-regulated physiological turnover of mammary tissue. Failure of this active gene-dependent process is central both to the development of breast cancer and to the appearance of the therapy-resistant cancer cells that produce clinical relapse. Functional expression cloning in two independent laboratories has identified Finkel–Biskis–Reilly murine sarcoma virus-associated ubiquitously expressed gene (Fau) as a novel apoptosis regulator and candidate tumour suppressor. Fau modifies apoptosis-controller Bcl-G, which is also a key target for candidate oncoprotein maternal embryonic leucine zipper kinase (MELK). We have used RNA interference to downregulate Fau and Bcl-G expression, both simultaneously and independently, in breast cancer cells in vitro to determine the importance of their roles in apoptosis. Expression of Fau, Bcl-G and MELK was measured by quantitative RT-PCR in breast cancer tissue and in matched breast epithelial tissue from the same patients. Expression data of these genes obtained using microarrays from a separate group of patients were related to patient survival in Kaplan–Meier analyses. siRNA-mediated downregulation of either Fau or Bcl-G expression inhibited apoptosis, and the inhibition produced by combining the two siRNAs was consistent with control of Bcl-G by Fau. Fau expression is significantly reduced in breast cancer tissue and this reduction is associated with poor patient survival, as predicted for a candidate breast cancer tumour suppressor. In addition, MELK expression is increased in breast cancer tissue and this increase is also associated with poor patient survival, as predicted for a candidate oncogene. Bcl-G expression is reduced in breast cancer tissue but decreased Bcl-G expression showed no correlation with survival, indicating that the most important factors controlling Bcl-G activity are post-translational modification (by Fau and MELK) rather than the rate of transcription of Bcl-G itself. The combination of in vitro functional studies with the analysis of gene expression in clinical breast cancer samples indicates that three functionally interconnected genes, Fau, Bcl-G and MELK, are crucially important in breast cancer and identifies them as attractive targets for improvements in breast cancer risk prediction, prognosis and therapy.

Journal ArticleDOI
TL;DR: The results prompted a conceptual shift in the classification of breast cancer, which is increasingly viewed not as a single disease but as a collection of several biologically distinct neoplastic diseases that arise from the breast epithelium.
Abstract: Page 1 of 3 (page number not for citation purposes) Molecular types of breast cancer Important differences in the clinical behaviour of oestrogen receptor (ER)-positive and ER-negative cancers have been recognised for a long time [1]. Nevertheless, breast cancer was regarded as a single disease with variable histology and clinical course. More recently, high-throughput analytical methods revealed unexpectedly large-scale molecular differences between ER-positive cancers and ER-negative cancers [2]. These results prompted a conceptual shift in the classification of breast cancer, which is increasingly viewed not as a single disease but as a collection of several biologically distinct neoplastic diseases that arise from the breast epithelium.

Journal ArticleDOI
TL;DR: Results suggest that leptin signaling plays an important role in the growth of both ER+ and ER- BC that is associated with the leptin regulation of pro-angiogenic and pro-proliferative molecules.
Abstract: Introduction We have shown previously that treatment with pegylated leptin peptide receptor antagonist 2 (PEG-LPrA2) reduced the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor type 2 (VEGFR2) and growth of 4T1-breast cancer (BC) in syngeneic mice. In this investigation, PEG-LPrA2 was used to evaluate whether the inhibition of leptin signaling has differential impact on the expression of pro-angiogenic and pro-proliferative molecules and growth of human estrogen receptor-positive (ER +) and estrogen receptor-negative (ER-) BC xenografts

Journal ArticleDOI
TL;DR: This data constitutes the first report of direct involvement of 5-HT in human breast cancer, and opens a new avenue for identification of diagnostic and prognostic markers, and valuable new therapeutic targets for managing breast cancer.
Abstract: Introduction The breast microenvironment can either retard or accelerate the events associated with progression of latent cancers. However, the actions of local physiological mediators in the context of breast cancers are poorly understood. Serotonin (5-HT) is a critical local regulator of epithelial homeostasis in the breast and other organs. Herein, we report complex alterations in the intrinsic mammary gland serotonin system of human breast cancers.

Journal ArticleDOI
TL;DR: It is found that the serine/threonine kinase, PKD1, is highly expressed in ductal epithelial cells of normal human breast tissue, but is reduced in its expression in more than 95% of all analysed samples of human invasive breast tumours.
Abstract: The biological and molecular events that regulate the invasiveness of breast tumour cells need to be further revealed to develop effective therapies that stop breast cancer from expanding and metastasising. Human tissue samples of invasive breast cancer and normal breast, as well as breast cancer cell lines, were evaluated for protein kinase D (PKD) expression, to test if altered expression could serve as a marker for invasive breast cancer. We further utilised specific PKD1-shRNA and a system to inducibly-express PKD1 to analyse the role of PKD1 in the invasive behaviour of breast cancer cell lines in two-dimensional (2D) and three-dimensional (3D) culture. Invasive behaviour in breast cancer cell lines has been linked to matrix metalloproteinases (MMPs), so we also determined if PKD1 regulates the expression and activity of these enzymes. We found that the serine/threonine kinase, PKD1, is highly expressed in ductal epithelial cells of normal human breast tissue, but is reduced in its expression in more than 95% of all analysed samples of human invasive breast tumours. Additionally, PKD1 is not expressed in highly invasive breast cancer cell lines, whereas non-invasive or very low-invasive breast cancer cell lines express PKD1. Our results further implicate that in MDA-MB-231 cells PKD1 expression is blocked by epigenetic silencing via DNA methylation. The re-expression of constitutively-active PKD1 in MDA-MB-231 cells drastically reduced their ability to invade in 2D and 3D cell culture. Moreover, MCF-7 cells acquired the ability to invade in 2D and 3D cell culture when PKD1 expression was knocked-down by shRNA. PKD1 also regulated the expression of breast cancer cell MMPs, MMP-2, MMP-7, MMP-9, MMP-10, MMP-11, MMP-13, MMP-14 and MMP-15, providing a potential mechanism for PKD1 mediation of the invasive phenotype. Our results identify decreased expression of the PKD1 as a marker for invasive breast cancer. They further suggest that the loss of PKD1 expression increases the malignant potential of breast cancer cells. This may be due to the function of PKD1 as a negative regulator of MMP expression. Our data suggest re-expression of PKD1 as a potential therapeutic strategy.

Journal ArticleDOI
TL;DR: Changes in molecular signatures following downmodulation of CD146 expression suggest that CD146 downmodulated expression is associated with the reversal of several biological characteristics associated with epithelial to mesenchymal transition, and the phenomenon associatedwith the metastatic process.
Abstract: Metastasis is a complex process involving loss of adhesion, migration, invasion and proliferation of cancer cells. Cell adhesion molecules play a pivotal role in this phenomenon by regulating cell–cell and cell–matrix interactions. CD146 (MCAM) is associated with an advanced tumor stage in melanoma, prostate cancer and ovarian cancer. Studies of CD146 expression and function in breast cancer remain scarce except for a report concluding that CD146 could act as a tumor suppressor in breast carcinogenesis. To resolve these apparent discrepancies in the role of CD146 in tumor cells, we looked at the association of CD146 expression with histoclinical features in human primary breast cancers using DNA and tissue microarrays. By flow cytometry, we characterized CD146 expression on different breast cancer cell lines. Using siRNA or shRNA technology, we studied functional consequences of CD146 downmodulation of MDA-MB-231 cells in migration assays. Wild-type, mock-transfected and downmodulated transfected cells were profiled using whole-genome DNA microarrays to identify genes whose expression was modified by CD146 downregulation. Microarray studies revealed the association of higher levels of CD146 with histoclinical features that belong to the basal cluster of human tumors. Expression of CD146 protein on epithelial cells was detected in a small subset of cancers with histoclinical features of basal tumors. CD146+ cell lines displayed a mesenchymal phenotype. Downmodulation of CD146 expression in the MDA-MB-231 cell line resulted in downmodulation of vimentin, as well as of a set of genes that include both genes associated with a poor prognosis in a variety of cancers and genes known to promote cell motility. In vitro functional assays revealed decreased migration abilities associated with decreased CD146 expression. In addition to its expression in the vascular compartment, CD146 is expressed on a subset of epithelial cells in malignant breast. CD146 may directly or indirectly contribute to tumor aggressiveness by promoting malignant cell motility. Changes in molecular signatures following downmodulation of CD146 expression suggest that CD146 downmodulation is associated with the reversal of several biological characteristics associated with epithelial to mesenchymal transition, and the phenomenon associated with the metastatic process.

Journal ArticleDOI
TL;DR: The current study demonstrated the usefulness of the antibody-bead array approach in finding signatures specific for primary non-metastatic breast cancer and illustrated the potential for early, high sensitivity detection of breast cancer.
Abstract: Breast cancer is the most common type of cancer seen in women in western countries. Thus, diagnostic modalities sensitive to early-stage breast cancer are needed. Antibody-based array platforms of a data-driven type, which are expected to facilitate more rapid and sensitive detection of novel biomarkers, have emerged as a direct, rapid means for profiling cancer-specific signatures using small samples. In line with this concept, our group constructed an antibody bead array panel for 35 analytes that were selected during the discovery step. This study was aimed at testing the performance of this 35-plex array panel in profiling signatures specific for primary non-metastatic breast cancer and validating its diagnostic utility in this independent population. Thirty-five analytes were selected from more than 50 markers through screening steps using a serum bank consisting of 4,500 samples from various types of cancer. An antibody-bead array of 35 markers was constructed using the Luminex™ bead array platform. A study population consisting of 98 breast cancer patients and 96 normal subjects was analysed using this panel. Multivariate classification algorithms were used to find discriminating biomarkers and validated with another independent population of 90 breast cancer and 79 healthy controls. Serum concentrations of epidermal growth factor, soluble CD40-ligand and proapolipoprotein A1 were increased in breast cancer patients. High-molecular-weight-kininogen, apolipoprotein A1, soluble vascular cell adhesion molecule-1, plasminogen activator inhibitor-1, vitamin-D binding protein and vitronectin were decreased in the cancer group. Multivariate classification algorithms distinguished breast cancer patients from the normal population with high accuracy (91.8% with random forest, 91.5% with support vector machine, 87.6% with linear discriminant analysis). Combinatorial markers also detected breast cancer at an early stage with greater sensitivity. The current study demonstrated the usefulness of the antibody-bead array approach in finding signatures specific for primary non-metastatic breast cancer and illustrated the potential for early, high sensitivity detection of breast cancer. Further validation is required before array-based technology is used routinely for early detection of breast cancer.