scispace - formally typeset
Search or ask a question

Showing papers in "Cold Spring Harbor Perspectives in Biology in 2009"


Journal ArticleDOI
TL;DR: How genetic evidence in mice has revealed complex roles for the NF-kappaB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway is described.
Abstract: The nuclear factor NF-κB pathway has long been considered a prototypical proinflammatory signaling pathway, largely based on the role of NF-κB in the expression of proinflammatory genes including cytokines, chemokines, and adhesion molecules In this article, we describe how genetic evidence in mice has revealed complex roles for the NF-κB in inflammation that suggest both pro- and anti-inflammatory roles for this pathway NF-κB has long been considered the “holy grail” as a target for new anti-inflammatory drugs; however, these recent studies suggest this pathway may prove a difficult target in the treatment of chronic disease In this article, we discuss the role of NF-κB in inflammation in light of these recent studies

3,396 citations


Journal ArticleDOI
TL;DR: The NF-kappaB pathway is a paradigm for understanding general principles of signal transduction and gene regulation as well as other pathway-specific mediators, and the transcription factors are themselves extensively modified.
Abstract: Nuclear factor-κB (NF-κB) consists of a family of transcription factors that play critical roles in inflammation, immunity, cell proliferation, differentiation, and survival. Inducible NF-κB activation depends on phosphorylation-induced proteosomal degradation of the inhibitor of NF-κB proteins (IκBs), which retain inactive NF-κB dimers in the cytosol in unstimulated cells. The majority of the diverse signaling pathways that lead to NF-κB activation converge on the IκB kinase (IKK) complex, which is responsible for IκB phosphorylation and is essential for signal transduction to NF-κB. Additional regulation of NF-κB activity is achieved through various post-translational modifications of the core components of the NF-κB signaling pathways. In addition to cytosolic modifications of IKK and IκB proteins, as well as other pathway-specific mediators, the transcription factors are themselves extensively modified. Tremendous progress has been made over the last two decades in unraveling the elaborate regulatory networks that control the NF-κB response. This has made the NF-κB pathway a paradigm for understanding general principles of signal transduction and gene regulation.

2,093 citations


Journal ArticleDOI
TL;DR: Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination.
Abstract: Understanding of tight junctions has evolved from their historical perception as inert solute barriers to recognition of their physiological and biochemical complexity. Many proteins are specifically localized to tight junctions, including cytoplasmic actin-binding proteins and adhesive transmembrane proteins. Among the latter are claudins, which are critical barrier proteins. Current information suggests that the paracellular barrier is most usefully modeled as having two physiologic components: a system of charge-selective small pores, 4 A in radius, and a second pathway created by larger discontinuities in the barrier, lacking charge or size discrimination. The first pathway is influenced by claudin expression patterns and the second is likely controlled by different proteins and signals. Recent information on claudin function and disease-causing mutations have led to a more complete understanding of their role in barrier formation, but progress is impeded by lack of high resolution structural information.

843 citations


Journal ArticleDOI
TL;DR: The NF-kappaB transcription factors have been suspected to be involved in cancer development since their discovery because of their kinship with the v-Rel oncogene product as mentioned in this paper.
Abstract: NF-kappaB transcription factors have been suspected to be involved in cancer development since their discovery because of their kinship with the v-Rel oncogene product. Subsequent work led to identification of oncogenic mutations that result in NF-kappaB activation in lymphoid malignancies, but most of these mutations affect upstream components of NF-kappaB signaling pathways, rather than NF-kappaB family members themselves. NF-kappaB activation has also been observed in many solid tumors, but so far no oncogenic mutations responsible for NF-kappaB activation in carcinomas have been identified. In such cancers, NF-kappaB activation is a result of underlying inflammation or the consequence of formation of an inflammatory microenvironment during malignant progression. Most importantly, through its ability to up-regulate the expression of tumor promoting cytokines, such as IL-6 or TNF-alpha, and survival genes, such as Bcl-X(L), NF-kappaB provides a critical link between inflammation and cancer.

665 citations


Journal ArticleDOI
TL;DR: The role of cadherins and cadherin-related proteins in human cancer is reviewed, including E-cadherin, the prototype of the large cadher in superfamily, which is renowned for its potent malignancy suppressing activity.
Abstract: We review the role of cadherins and cadherin-related proteins in human cancer. Cellular and animal models for human cancer are also dealt with whenever appropriate. E-cadherin is the prototype of the large cadherin superfamily and is renowned for its potent malignancy suppressing activity. Different mechanisms for inactivating E-cadherin/CDH1 have been identified in human cancers: inherited and somatic mutations, aberrant protein processing, increased promoter methylation, and induction of transcriptional repressors such as Snail and ZEB family members. The latter induce epithelial mesenchymal transition, which is also associated with induction of "mesenchymal" cadherins, a hallmark of tumor progression. VE-cadherin/CDH5 plays a role in tumor-associated angiogenesis. The atypical T-cadherin/CDH13 is often silenced in cancer cells but up-regulated in tumor vasculature. The review also covers the status of protocadherins and several other cadherin-related molecules in human cancer. Perspectives for emerging cadherin-related anticancer therapies are given.

627 citations


Journal ArticleDOI
TL;DR: The adherens junction is an element of the cell-cell junction in which cadherin receptors bridge the neighboring plasma membranes via their homophilic interactions, and elucidating the molecular architecture of the AJs and their regulatory mechanisms are crucial for understanding how the multicellular system is organized.
Abstract: The adherens junction (AJ) is an element of the cell-cell junction in which cadherin receptors bridge the neighboring plasma membranes via their homophilic interactions. Cadherins associate with cytoplasmic proteins, called catenins, which in turn bind to cytoskeletal components, such as actin filaments and microtubules. These molecular complexes further interact with other proteins, including signaling molecules, rendering the AJs into highly dynamic and regulatable structures. The AJs of such nature contribute to the physical linking of cells, as well as to the regulation of cell-cell contacts, which is essential for morphogenesis and remodeling of tissues and organs. Thus, elucidating the molecular architecture of the AJs and their regulatory mechanisms are crucial for understanding how the multicellular system is organized.

546 citations


Journal ArticleDOI
TL;DR: The goal of this article is to present a concise review of the tumor suppressor role of the p53 network and to highlight the context-dependent nature of p53 target-gene functions.
Abstract: The majority of human cancers acquire mutations that abrogate the p53 tumor suppressor network and, as a consequence, p53 is one of the most extensively studied proteins in cancer research. Because of its potent tumor suppressive activity, it is widely assumed that a molecular understanding of p53 action will produce fundamental insights into natural processes that limit tumorigenesis and may identify key molecular targets for therapeutic intervention. p53 functions largely as a transcription factor, and can trigger a variety of antiproliferative programs by activating or repressing key effector genes. Despite a significant body of literature detailing the biochemical and biological functions of p53, much remains to be elucidated. Indeed, the p53 network is as complex and enigmatic as it is relevant. It is the goal of this article, written 30 years after the discovery of p53, to present a concise review of the tumor suppressor role of the p53 network and to highlight the context-dependent nature of p53 target-gene functions.

534 citations


Journal ArticleDOI
TL;DR: The idea that the impact of modification on p53 function is achieved through collective and integrated events is developed.
Abstract: The p53 protein is modified by as many as 50 individual posttranslational modifications. Many of these occur in response to genotoxic or nongenotoxic stresses and show interdependence, such that one or more modifications can nucleate subsequent events. This interdependent nature suggests a pathway that operates through multiple cooperative events as opposed to distinct functions for individual, isolated modifications. This concept, supported by recent investigations, which provide exquisite detail as to how various modifications mediate precise protein-protein interactions in a cooperative manner, may explain why knockin mice expressing p53 proteins substituted at one or just a few sites of modification typically show only subtle effects on p53 function. The present article focuses on recent, exciting progress and develops the idea that the impact of modification on p53 function is achieved through collective and integrated events.

443 citations


Journal ArticleDOI
TL;DR: It appears that alpha-catenin actively regulates the actin cytoskeleton at cadherin-based cell-cell contacts.
Abstract: Classical cadherins mediate specific adhesion at intercellular adherens junctions. Interactions between cadherin ectodomains from apposed cells mediate cell-cell contact, whereas the intracellular region functionally links cadherins to the underlying cytoskeleton. Structural, biophysical, and biochemical studies have provided important insights into the mechanism and specificity of cell-cell adhesion by classical cadherins and their interplay with the cytoskeleton. Adhesive binding arises through exchange of beta strands between the first extracellular cadherin domains (EC1) of partner cadherins from adjacent cells. This "strand-swap" binding mode is common to classical and desmosomal cadherins, but sequence alignments suggest that other cadherins will bind differently. The intracellular region of classical cadherins binds to p120 and beta-catenin, and beta-catenin binds to the F-actin binding protein alpha-catenin. Rather than stably bridging beta-catenin to actin, it appears that alpha-catenin actively regulates the actin cytoskeleton at cadherin-based cell-cell contacts.

423 citations


Journal ArticleDOI
TL;DR: Inhibition of NF-kappaB in glia might ameliorate disease, whereas activation in neurons might enhance memory, and this review focuses on results produced by the analysis of genetic models.
Abstract: The transcription factor NF-kappaB has diverse functions in the nervous system, depending on the cellular context. NF-kappaB is constitutively activated in glutamatergic neurons. Knockout of p65 or inhibition of neuronal NF-kappaB by super-repressor IkappaB resulted in the loss of neuroprotection and defects in learning and memory. Similarly, p50-/- mice have a lower learning ability and are sensitive to neurotoxins. Activated NF-kappaB can be transported retrogradely from activated synapses to the nucleus to translate short-term processes to long-term changes such as axon growth, which is important for long-term memory. In glia, NF-kappaB is inducible and regulates inflammatory processes that exacerbate diseases such as autoimmune encephalomyelitis, ischemia, and Alzheimer's disease. In summary, inhibition of NF-kappaB in glia might ameliorate disease, whereas activation in neurons might enhance memory. This review focuses on results produced by the analysis of genetic models.

339 citations


Journal ArticleDOI
TL;DR: Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking, and mechanistic roles of HSPG in controlling morphogen gradient formation are revealed.
Abstract: During development, secreted morphogens such as Wnt, Hedgehog (Hh), and BMP emit from their producing cells in a morphogenetic field, and specify different cell fates in a direct concentration-dependent manner. Understanding how morphogens form their concentration gradients to pattern tissues has been a central issue in developmental biology. Various experimental studies from Drosophila have led to several models to explain the formation of morphogen gradients. Over the past decade, one of the main findings in this field is the characterization of heparan sulfate proteoglycan (HSPG) as an essential regulator for morphogen gradient formation. Genetic and cell biological studies have showed that HSPGs can regulate morphogen activities at various steps including control of morphogen movement, signaling, and intracellular trafficking. Here, we review these data, highlighting recent findings that reveal mechanistic roles of HSPGs in controlling morphogen gradient formation.

Journal ArticleDOI
TL;DR: The current model of Wnt signaling is reviewed and how recent work using model organisms has advanced the understanding of the roles Wnt signaled plays in both normal development and in disease is discussed.
Abstract: One of the early surprises in the study of cell adhesion was the discovery that beta-catenin plays dual roles, serving as an essential component of cadherin-based cell-cell adherens junctions and also serving as the key regulated effector of the Wnt signaling pathway. Here, we review our current model of Wnt signaling and discuss how recent work using model organisms has advanced our understanding of the roles Wnt signaling plays in both normal development and in disease. These data help flesh out the mechanisms of signaling from the membrane to the nucleus, revealing new protein players and providing novel information about known components of the pathway.

Journal ArticleDOI
TL;DR: A simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided, and the advantages and limitations of different experimental approaches to gradient formation analysis are discussed.
Abstract: How morphogen gradients are formed in target tissues is a key question for understanding the mechanisms of morphological patterning. Here, we review different mechanisms of morphogen gradient formation from theoretical and experimental points of view. First, a simple, comprehensive overview of the underlying biophysical principles of several mechanisms of gradient formation is provided. We then discuss the advantages and limitations of different experimental approaches to gradient formation analysis.

Journal ArticleDOI
TL;DR: Those embryo patterning steps that involve auxin activity are described, and recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development are reviewed.
Abstract: Plants start their life as a single cell, which, during the process of embryogenesis, is transformed into a mature embryo with all organs necessary to support further growth and development. Therefore, each basic cell type is first specified in the early embryo, making this stage of development excellently suited to study mechanisms of coordinated cell specification—pattern formation. In recent years, it has emerged that the plant hormone auxin plays a prominent role in embryo development. Most pattern formation steps in the early Arabidopsis embryo depend on auxin biosynthesis, transport, and response. In this article, we describe those embryo patterning steps that involve auxin activity, and we review recent data that shed light on the molecular mechanisms of auxin action during this phase of plant development.

Journal ArticleDOI
TL;DR: The challenge is to understand how regulators and effectors are adapted to regulate symmetry breaking processes that generate cell polarities that are specialized for different cellular activities and functions.
Abstract: Polarized epithelial cells have a distinctive apical–basal axis of polarity for vectorial transport of ions and solutes across the epithelium. In contrast, migratory mesenchymal cells have a front–rear axis of polarity. During development, mesenchymal cells convert to epithelia by coalescing into aggregates that undergo epithelial differentiation. Signaling networks and protein complexes comprising Rho family GTPases, polarity complexes (Crumbs, PAR, and Scribble), and their downstream effectors, including the cytoskeleton and the endocytic and exocytic vesicle trafficking pathways, together regulate the distributions of plasma membrane and cytoskeletal proteins between front–rear and apical–basal polarity. The challenge is to understand how these regulators and effectors are adapted to regulate symmetry breaking processes that generate cell polarities that are specialized for different cellular activities and functions.

Journal ArticleDOI
TL;DR: These three distinct stages in the lifespan of cell-cell junctions are discussed, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling ofcell- cell junctions.
Abstract: Epithelial cell-cell junctions are formed by apical adherens junctions (AJs), which are composed of cadherin adhesion molecules interacting in a dynamic way with the cortical actin cytoskeleton Regulation of cell-cell junction stability and dynamics is crucial to maintain tissue integrity and allow tissue remodeling throughout development Actin filament turnover and organization are tightly controlled together with myosin-II activity to produce mechanical forces that drive the assembly, maintenance, and remodeling of AJs In this review, we will discuss these three distinct stages in the lifespan of cell-cell junctions, using several developmental contexts, which illustrate how mechanical forces are generated and transmitted at junctions, and how they impact on the integrity and the remodeling of cell-cell junctions

Journal ArticleDOI
TL;DR: In this paper, the authors discuss similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms, as well as discuss the differences between the two mechanisms.
Abstract: Cells of many tissues acquire cellular asymmetry to execute their physiologic functions. The planar cell polarity system, first characterized in Drosophila, is important for many of these events. Studies in Drosophila suggest that an upstream system breaks cellular symmetry by converting tissue gradients to subcellular asymmetry, whereas a downstream system amplifies subcellular asymmetry and communicates polarity between cells. In this review, we discuss apparent similarities and differences in the mechanism that controls PCP as it has been adapted to a broad variety of morphological cellular asymmetries in various organisms.

Journal ArticleDOI
TL;DR: A general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades is presented.
Abstract: The nuclear factor kappaB (NF-kappaB) pathways play a major role in Drosophila host defense. Two recognition and signaling cascades control this immune response. The Toll pathway is activated by Gram-positive bacteria and by fungi, whereas the immune deficiency (Imd) pathway responds to Gram-negative bacterial infection. The basic mechanisms of recognition of these various types of microbial infections by the adult fly are now globally understood. Even though some elements are missing in the intracellular pathways, numerous proteins and interactions have been identified. In this article, we present a general picture of the immune functions of NF-kappaB in Drosophila with all the partners involved in recognition and in the signaling cascades.

Journal ArticleDOI
TL;DR: Together, these mechanisms exemplify a strategy for morphogen interpretation, which is termed temporal adaptation that relies on the continuous processing and refinement of the cellular response to the graded signal.
Abstract: The secreted protein Sonic Hedgehog (SHH) acts in graded fashion to pattern the dorsal-ventral axis of the vertebrate neural tube. This is a dynamic process in which increasing concentrations and durations of exposure to SHH generate neurons with successively more ventral identities. Interactions between the receiving cells and the graded signal underpin the mechanism of SHH action. In particular, negative feedback, involving proteins transcriptionally induced or repressed by SHH signaling, plays an essential role in shaping the graded readout. On one hand, negative feedback controls, in a noncell-autonomous manner, the distribution of SHH across the field of receiving cells. On the other, it acts cell-autonomously to convert different concentrations of SHH into distinct durations of intracellular signal transduction. Together, these mechanisms exemplify a strategy for morphogen interpretation, which we have termed temporal adaptation that relies on the continuous processing and refinement of the cellular response to the graded signal.

Journal ArticleDOI
TL;DR: The by and large parallel discoveries of the junction protein families are reported and these include tetraspan proteins arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules.
Abstract: The organization of metazoa is based on the formation of tissues and on tissue-typical functions and these in turn are based on cell–cell connecting structures. In vertebrates, four major forms of cell junctions have been classified and the molecular composition of which has been elucidated in the past three decades: Desmosomes, which connect epithelial and some other cell types, and the almost ubiquitous adherens junctions are based on closely cis-packed glycoproteins, cadherins, which are associated head-to-head with those of the hemi-junction domain of an adjacent cell, whereas their cytoplasmic regions assemble sizable plaques of special proteins anchoring cytoskeletal filaments. In contrast, the tight junctions (TJs) and gap junctions (GJs) are formed by tetraspan proteins (claudins and occludins, or connexins) arranged head-to-head as TJ seal bands or as paracrystalline connexin channels, allowing intercellular exchange of small molecules. The by and large parallel discoveries of the junction protein families are reported.

Journal ArticleDOI
TL;DR: The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues, with positive feedback loops capable of amplifying small and stochastic asymmetries.
Abstract: The budding yeast Saccharomyces cerevisiae has been an invaluable model system for the study of the establishment of cellular asymmetry and growth polarity in response to specific physiological cues. A large body of experimental observations has shown that yeast cells are able to break symmetry and establish polarity through two coupled and partially redundant intrinsic mechanisms, even in the absence of any pre-existing external asymmetry. One of these mechanisms is dependent upon interplay between the actin cytoskeleton and the Rho family GTPase Cdc42, whereas the other relies on a Cdc42 GTPase signaling network. Integral to these mechanisms appear to be positive feedback loops capable of amplifying small and stochastic asymmetries. Spatial cues, such as bud scars and pheromone gradients, orient cell polarity by modulating the regulation of the Cdc42 GTPase cycle, thereby biasing the site of asymmetry amplification.

Journal ArticleDOI
TL;DR: The key genetic studies that uncovered the role of cadherin-catenin proteins in vertebrate development are highlighted and the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis is discussed.
Abstract: Properly regulated intercellular adhesion is critical for normal development of all metazoan organisms. Adherens junctions play an especially prominent role in development because they link the adhesive function of cadherin–catenin protein complexes to the dynamic forces of the actin cytoskeleton, which helps to orchestrate a spatially confined and very dynamic assembly of intercellular connections. Intriguingly, in addition to maintaining intercellular adhesion, cadherin–catenin proteins are linked to several major developmental signaling pathways crucial for normal morphogenesis. In this article we will highlight the key genetic studies that uncovered the role of cadherin–catenin proteins in vertebrate development and discuss the potential role of these proteins as molecular biosensors of external cellular microenvironment that may spatially confine signaling molecules and polarity cues to orchestrate cellular behavior throughout the complex process of normal morphogenesis.

Journal ArticleDOI
TL;DR: This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells.
Abstract: Nodes of Ranvier and axon initial segments of myelinated nerves, sites of cell-cell contact in early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all perform physiological functions that depend on clustering of functionally related but structurally diverse ion transporters and cell adhesion molecules within microdomains of the plasma membrane. These specialized cell surface domains appeared at different times in metazoan evolution, involve a variety of cell types, and are populated by distinct membrane-spanning proteins. Nevertheless, recent work has shown that these domains all share on their cytoplasmic surfaces a membrane skeleton comprised of members of the ankyrin and spectrin families. This review will summarize basic features of ankyrins and spectrins, and will discuss emerging evidence that these proteins are key players in a conserved mechanism responsible for assembly and maintenance of physiologically important domains on the surfaces of diverse cells.

Journal ArticleDOI
TL;DR: The connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root are examined.
Abstract: Light is vital for plant growth and development: It provides energy for photosynthesis, but also reliable information on seasonal timing and local habitat conditions. Light sensing is therefore of paramount importance for plants. Thus, plants have evolved sophisticated light receptors and signaling networks that detect and respond to changes in light intensity, duration, and spectral quality. Environmental light signals can drive developmental transitions such as germination and flowering, but they also continuously shape development to allow adaptation to the local habitat and microclimate. The ability to respond to a changing and sometimes unfavorable environment underlies the huge success of plants. Much of this growth and developmental plasticity is achieved by light modulation of auxin signaling systems. In this article, we examine the connections between light and auxin that elicit local responses, long distance signaling, and coordinated growth between the shoot and root.

Journal ArticleDOI
TL;DR: The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary.
Abstract: The orthogonal axes of Drosophila are established during oogenesis through a hierarchical series of symmetry-breaking steps, most of which can be traced back to asymmetries inherent in the architecture of the ovary. Oogenesis begins with the formation of a germline cyst of 16 cells connected by ring canals. Two of these 16 cells have four ring canals, whereas the others have fewer. The first symmetry-breaking step is the selection of one of these two cells to become the oocyte. Subsequently, the germline cyst becomes surrounded by somatic follicle cells to generate individual egg chambers. The second symmetry-breaking step is the posterior positioning of the oocyte within the egg chamber, a process mediated by adhesive interactions with a special group of somatic cells. Posterior oocyte positioning is accompanied by a par gene-dependent repolarization of the microtubule network, which establishes the posterior cortex of the oocyte. The next two steps of symmetry breaking occur during midoogenesis after the volume of the oocyte has increased about 10-fold. First, a signal from the oocyte specifies posterior follicle cells, polarizing a symmetric prepattern present within the follicular epithelium. Second, the posterior follicle cells send a signal back to the oocyte, which leads to a second repolarization of the oocyte microtubule network and the asymmetric migration of the oocyte nucleus. This process again requires the par genes. The repolarization of the microtubule network results in the transport of bicoid and oskar mRNAs, the anterior and posterior determinants, respectively, of the embryonic axis, to opposite poles of the oocyte. The asymmetric positioning of the oocyte nucleus defines a cortical region of the oocyte where gurken mRNA is localized, thus breaking the dorsal-ventral symmetry of the egg and embryo.

Journal ArticleDOI
TL;DR: Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools.
Abstract: A wealth of classical embryological manipulation experiments taking mainly advantage of the chicken limb buds identified the apical ectodermal ridge (AER) and the zone of polarizing activity (ZPA) as the respective ectodermal and mesenchymal key signaling centers coordinating proximodistal (PD) and anteroposterior (AP) limb axis development. These experiments inspired Wolpert's French flag model, which is a classic among morphogen gradient models. Subsequent molecular and genetic analysis in the mouse identified retinoic acid as proximal signal, and fibroblast growth factors (FGFs) and sonic hedgehog (SHH) as the essential instructive signals produced by AER and ZPA, respectively. Recent studies provide good evidence that progenitors are specified early with respect to their PD and AP fates and that morpho-regulatory signaling is also required for subsequent proliferative expansion of the specified progenitor pools. The determination of particular fates seems to occur rather late and depends on additional signals such as bone morphogenetic proteins (BMPs), which indicates that cells integrate signaling inputs over time and space. The coordinate regulation of PD and AP axis patterning is controlled by an epithelial-mesenchymal feedback signaling system, in which transcriptional regulation of the BMP antagonist Gremlin1 integrates inputs from the BMP, SHH, and FGF pathways. Vertebrate limb-bud development is controlled by a 4-dimensional (4D) patterning system integrating positive and negative regulatory feedback loops, rather than thresholds set by morphogen gradients.

Journal ArticleDOI
TL;DR: Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways.
Abstract: Flowering plants have evolved sophisticated and complicated reproductive structures to ensure optimal conditions for the next generation. Successful reproduction relies on careful timing and coordination of tissue development, which requires constant communication between these tissues. Work on flower and fruit development over the last decade places the phytohormone auxin in a key role as a master of patterning and tissue specification of reproductive organs. Although many questions still remain, it is now clear that auxin mediates its function in flowers and fruits through an integrated process of biosynthesis, transport, and signaling, as well as interaction with other hormonal pathways. In addition, the knowledge obtained so far about auxin function already allows researchers to develop tools for crop improvement and precision agriculture.

Journal ArticleDOI
TL;DR: Recent technological advances are beginning to reveal many fascinating details of the intracellular signaling components that spatially direct the cytoskeleton of neutrophils and D. discoideum and the complementary mechanisms that make the cell's front distinct from its back.
Abstract: Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) used by a neutrophil to choose its direction of polarity and to crawl effectively in response to chemoattractant gradients. Recent technological advances are beginning to reveal many fascinating details of the intracellular signaling components that spatially direct the cytoskeleton of neutrophils and D. discoideum and the complementary mechanisms that make the cell's front distinct from its back.

Journal ArticleDOI
TL;DR: The recent identification of a non-Rel subunit of NF-kappaB itself provides a new way to understand the selective high-affinity DNA binding specificity ofNF- kappaB conferred by a synergistic interaction within the whole complex.
Abstract: Nuclearfactor-kB(NF-kB)isapleiotropicmediatorofinducibleandspecificgeneregulation involving diverse biological activities including immune response, inflammation, cell proliferation, and death. The fine-tuning of the NF-kB DNA binding activity is essential for its fundamental function as a transcription factor. An increasing body of literature illustrates that this process can be elegantly and specifically controlled at multiple levels by different protein subsets. In particular, the recent identification of a non-Rel subunit of NF-kB itself provides a new way to understand the selective high-affinity DNA binding specificity of NF-kB conferred by a synergistic interaction within the whole complex. Here, we review the mechanism of the specification of DNA binding activity of NF-kB complexes, one of the most important aspects of NF-kB transcriptional control.

Journal ArticleDOI
TL;DR: The functions of morphogen and gene expression gradients in the assembly of the nervous system in the context of the development of the cerebral cortex are discussed.
Abstract: In the developing brain, gradients are commonly used to divide neurogenic regions into distinct functional domains. In this article, we discuss the functions of morphogen and gene expression gradients in the assembly of the nervous system in the context of the development of the cerebral cortex. The cerebral cortex is a mammal-specific region of the forebrain that functions at the top of the neural hierarchy to process and interpret sensory information, plan and organize tasks, and to control motor functions. The mature cerebral cortex is a modular structure, consisting of anatomically and functionally distinct areas. Those areas of neurons are generated from a uniform neuroepithelial sheet by two forms of gradients: graded extracellular signals and a set of transcription factor gradients operating across the field of neocortical stem cells. Fgf signaling from the rostral pole of the cerebral cortex sets up gradients of expression of transcription factors by both activating and repressing gene expression. However, in contrast to the spinal cord and the early Drosophila embryo, these gradients are not subsequently resolved into molecularly distinct domains of gene expression. Instead, graded information in stem cells is translated into discrete, region-specific gene expression in the postmitotic neuronal progeny of the stem cells.