scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Cerebral Blood Flow and Metabolism in 2015"


Journal ArticleDOI
TL;DR: Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.
Abstract: Neutrophils have key roles in ischemic brain injury, thrombosis, and atherosclerosis. As such, neutrophils are of great interest as targets to treat and prevent ischemic stroke. After stroke, neutrophils respond rapidly promoting blood–brain barrier disruption, cerebral edema, and brain injury. A surge of neutrophil-derived reactive oxygen species, proteases, and cytokines are released as neutrophils interact with cerebral endothelium. Neutrophils also are linked to the major processes that cause ischemic stroke, thrombosis, and atherosclerosis. Thrombosis is promoted through interactions with platelets, clotting factors, and release of prothrombotic molecules. In atherosclerosis, neutrophils promote plaque formation and rupture by generating oxidized-low density lipoprotein, enhancing monocyte infiltration, and degrading the fibrous cap. In experimental studies targeting neutrophils can improve stroke. However, early human studies have been met with challenges, and suggest that selective targeting of neutrophils may be required. Several properties of neutrophil are beneficial and thus may important to preserve in patients with stroke including antimicrobial, antiinflammatory, and neuroprotective functions.

371 citations


Journal ArticleDOI
TL;DR: Using histologic markers of serum protein, iron, and erythrocyte extravasation, significantly increased permeability of the BBB is shown in the postcommissural putamen of PD patients, and the dense innervation of the striatum by PD-affected regions allows for exploitation of this permeability for therapeutic goals.
Abstract: In vivo studies have shown that blood–brain barrier (BBB) dysfunction is involved in the course of Parkinson's disease (PD). However, these have lacked either anatomic definition or the ability to recognize minute changes in BBB integrity. Here, using histologic markers of serum protein, iron, and erythrocyte extravasation, we have shown significantly increased permeability of the BBB in the postcommissural putamen of PD patients. The dense innervation of the striatum by PD-affected regions allows for exploitation of this permeability for therapeutic goals. These results are also discussed in the context of the retrograde trans-synaptic hypothesis of PD spread.

251 citations


Journal ArticleDOI
TL;DR: A new method is described to outline the flow profile of the cerebral vascular tree, including reference values, and should be used for grading the collateral flow system.
Abstract: High-resolution phase-contrast magnetic resonance imaging can now assess flow in proximal and distal cerebral arteries. The aim of this study was to describe how total cerebral blood flow (tCBF) is ...

231 citations


Journal ArticleDOI
TL;DR: C cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain, as shown by ex vivo fluorescence imaging results.
Abstract: The intranasal administration route is increasingly being used as a noninvasive method to bypass the blood–brain barrier because evidence suggests small fractions of nasally applied macromolecules may reach the brain directly via olfactory and trigeminal nerve components present in the nasal mucosa. Upon reaching the olfactory bulb (olfactory pathway) or brainstem (trigeminal pathway), intranasally delivered macromolecules appear to rapidly distribute within the brains of rodents and primates. The mechanisms responsible for this distribution have yet to be fully characterized. Here, we have used ex vivo fluorescence imaging to show that bulk flow within the perivascular space (PVS) of cerebral blood vessels contributes to the rapid central distribution of fluorescently labeled 3 and 10 kDa dextran tracers after intranasal administration in anesthetized adult rats. Comparison of tracer plasma levels and fluorescent signal distribution associated with the PVS of surface arteries and internal cerebral vessels showed that the intranasal route results in unique central access to the PVS not observed after matched intravascular dosing in separate animals. Intranasal targeting to the PVS was tracer size dependent and could be regulated by modifying nasal epithelial permeability. These results suggest cerebral perivascular convection likely has a key role in intranasal drug delivery to the brain.

179 citations


Journal ArticleDOI
TL;DR: The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.
Abstract: Lactate acts as a 'buffer' between glycolysis and oxidative metabolism. In addition to being exchanged as a fuel by the monocarboxylate transporters (MCTs) between cells and tissues with different glycolytic and oxidative rates, lactate may be a 'volume transmitter' of brain signals. According to some, lactate is a preferred fuel for brain metabolism. Immediately after brain activation, the rate of glycolysis exceeds oxidation, leading to net production of lactate. At physical rest, there is a net efflux of lactate from the brain into the blood stream. But when blood lactate levels rise, such as in physical exercise, there is net influx of lactate from blood to brain, where the lactate is used for energy production and myelin formation. Lactate binds to the lactate receptor GPR81 aka hydroxycarboxylic acid receptor (HCAR1) on brain cells and cerebral blood vessels, and regulates the levels of cAMP. The localization and function of HCAR1 and the three MCTs (MCT1, MCT2, and MCT4) expressed in brain constitute the focus of this review. They are possible targets for new therapeutic drugs and interventions. The author proposes that lactate actions in the brain through MCTs and the lactate receptor underlie part of the favorable effects on the brain resulting from physical exercise.

161 citations


Journal ArticleDOI
TL;DR: A need is highlighted for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention.
Abstract: Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduces similarly novel interventions currently under investigation as alternative means of accelerating exercise-induced cerebrovascular adaptation. We highlight a need for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention. From a clinical perspective, interventions that selectively target the aging brain have the potential to prevent stroke and associated neurovascular diseases.

158 citations


Journal ArticleDOI
TL;DR: The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism.
Abstract: Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level–dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26±0.06 μmol/g (~30%) and 0.28±0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20±0.04 μmol/g (~5%) and 0.19±0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.

158 citations


Journal ArticleDOI
TL;DR: The data strongly suggest that ischemia-related BBB failure is predominantly caused by endothelial degeneration, and protecting endothelial cells may represent a promising therapeutical approach in addition to the established recanalizing strategies.
Abstract: Ischemic stroke not only impairs neuronal function but also affects the cerebral vasculature as indicated by loss of blood–brain barrier (BBB) integrity. Therefore, therapeutical recanalization includes an enhanced risk for hemorrhagic transformation and bleeding, traditionally attributed to a ‘reperfusion injury'. To investigate the mechanisms underlying ischemia-/reperfusion-related BBB opening, we applied multiple immunofluorescence labeling and electron microscopy in a rat model of thromboembolic stroke as well as mouse models of permanent and transient focal cerebral ischemia. In these models, areas exhibiting BBB breakdown were identified by extravasation of intravenously administered fluorescein isothiocyanate (FITC)-albumin. After 24 hours, expression of markers for tight and adherens junctions in areas of FITC-albumin leakage consistently remained unaltered in the applied models. However, lectin staining with isolectin B4 indicated structural alterations in the endothelium, which were confirmed by electron microscopy. While ultrastructural alterations in endothelial cells did not differ between the applied models including the reperfusion scenario, we regularly identified vascular alterations, which we propose to reflect four distinct stages of BBB breakdown with ultimate loss of endothelial cells. Therefore, our data strongly suggest that ischemia-related BBB failure is predominantly caused by endothelial degeneration. Thus, protecting endothelial cells may represent a promising therapeutical approach in addition to the established recanalizing strategies.

157 citations


Journal ArticleDOI
TL;DR: It is clear that in the brain, as in the peripheral tissues, L-lactate is not only used as a source of energy but also acts as a signaling molecule.
Abstract: In the brain, L-lactate is produced by both neurons and astrocytes. There is no doubt that neurons use L-lactate as a supplementary fuel although the importance of this energy source is disputed. Irrespective of its caloric value, L-lactate might also have a signaling role in the brain. Here, we review several current hypotheses of L-lactate mediated signaling. Some proposed mechanisms require L-lactate entry into the neurons leading to a shift in ATP/ADP ratio or redox state. Others postulate interaction with either known receptor HCA1 (GPR81) or a novel, yet unidentified receptor. We argue that the sensitivity of any such mechanism has to match the concentration range of extracellular L-lactate, which is less than ~1.5 mmol/L under physiologic conditions. From that point of view, some of the proposed mechanisms require supraphysiologic levels of L-lactate and could be engaged during ischemia or seizures when L-lactate concentration rises dramatically. Currently, we do not know whether L-lactate production in the brain occurs in microdomains, which might create higher than average local concentrations. Nevertheless, it is clear that in the brain, as in the peripheral tissues, L-lactate is not only used as a source of energy but also acts as a signaling molecule.

139 citations


Journal ArticleDOI
TL;DR: It is found that TAK-242 significantly reduced cerebral infarction compared with vehicle control, improved neurologic function, inhibited the phosphorylation of downstream protein kinases in TLR4 signaling pathway, and downregulated the expression of inflammatory cytokines.
Abstract: Toll-like receptor 4 (TLR4) contributes to cerebral ischemia/reperfusion (I/R) injury and is a potential target for the treatment of ischemic stroke. This experiment is to evaluate the effect of an exogenous TLR4 antagonist, TAK-242, against acute cerebral I/R injury. A mouse model of cerebral I/R was induced by transient middle cerebral artery occlusion. TAK-242 (3 mg/kg body weight) was injected intraperitoneally 1 hour after ischemia. Our results showed that the concentration of TAK-242 in plasma increased to 52.0 ng/mL 3 hours after injection, was maintained at 54.1 ng/mL 8 hours after injection, and decreased to 22.6 ng/mL 24 hours after injection. The concentration of TAK-242 in brain tissue increased to 26.1 ng/mL in ischemic hemisphere and 14.2 ng/mL in nonischemic hemisphere 3 hours after injection, and was maintained at the similar levels 24 hours after injection. We found that TAK-242 significantly reduced cerebral infarction compared with vehicle control, improved neurologic function, inhibited the phosphorylation of downstream protein kinases in TLR4 signaling pathway, and downregulated the expression of inflammatory cytokines. We conclude that TAK-242 is able to cross blood-brain barrier, blocks TLR4 signaling, mediates the expression of inflammatory cytokines, and protects the brain from acute damage induced by I/R.

135 citations


Journal ArticleDOI
Wael Alata1, Yue Ye1, Isabelle St-Amour, Milène Vandal1, Frédéric Calon1 
TL;DR: Deep divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development.
Abstract: Human apolipoprotein E (APOE) exists in three isoforms ɛ2, ɛ3, and ɛ4, of which APOE4 is the main genetic risk factor of Alzheimer's disease (AD). As cerebrovascular defects are associated with AD, we tested whether APOE genotype has an impact on the integrity and function of the blood-brain barrier (BBB) in human APOE-targeted replacement mice. Using the quantitative in situ brain perfusion technique, we first found lower (13.0% and 17.0%) brain transport coefficient (Clup) of [(3)H]-diazepam in APOE4 mice at 4 and 12 months, compared with APOE2 and APOE3 mice, reflecting a decrease in cerebral vascularization. Accordingly, results from immunohistofluorescence experiments revealed a structurally reduced cerebral vascularization (26% and 38%) and thinner basement membranes (30% and 35%) in 12-month-old APOE4 mice compared with APOE2 and APOE3 mice, suggesting vascular atrophy. In addition, APOE4 mice displayed a 29% reduction in [(3)H]-d-glucose transport through the BBB compared with APOE2 mice without significant changes in the expression of its transporter GLUT1 in brain capillaries. However, an increase of 41.3% of receptor for advanced glycation end products (RAGE) was found in brain capillaries of 12-month-old APOE4 mice. In conclusion, profound divergences were observed between APOE genotypes at the cerebrovascular interface, suggesting that APOE4-induced BBB anomalies may contribute to AD development.

Journal ArticleDOI
TL;DR: Studies on metalloproteinase-9 inhibitors and on the involvement of Notch signaling in AVMs provide promising data for a potential basis for pharmacological treatment of AVMs, and potential therapeutic targets and areas requiring further investigation are highlighted.
Abstract: Cerebral arteriovenous malformations (AVMs) entail a significant risk of intracerebral hemorrhage owing to the direct shunting of arterial blood into the venous vasculature without the dissipation of the arterial blood pressure. The mechanisms involved in the growth, progression and rupture of AVMs are not clearly understood, but a number of studies point to inflammation as a major contributor to their pathogenesis. The upregulation of proinflammatory cytokines induces the overexpression of cell adhesion molecules in AVM endothelial cells, resulting in enhanced recruitment of leukocytes. The increased leukocyte-derived release of metalloproteinase-9 is known to damage AVM walls and lead to rupture. Inflammation is also involved in altering the AVM angioarchitecture via the upregulation of angiogenic factors that affect endothelial cell proliferation, migration and apoptosis. The effects of inflammation on AVM pathogenesis are potentiated by certain single-nucleotide polymorphisms in the genes of proinflammatory cytokines, increasing their protein levels in the AVM tissue. Furthermore, studies on metalloproteinase-9 inhibitors and on the involvement of Notch signaling in AVMs provide promising data for a potential basis for pharmacological treatment of AVMs. Potential therapeutic targets and areas requiring further investigation are highlighted.

Journal ArticleDOI
TL;DR: An in vivo model of brain iron deficiency, the Belgrade rat, is used and the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes are integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism.
Abstract: Neurologic disorders such as Alzheimer's, Parkinson's disease, and Restless Legs Syndrome involve a loss of brain iron homeostasis. Moreover, iron deficiency is the most prevalent nutritional concern worldwide with many associated cognitive and neural ramifications. Therefore, understanding the mechanisms by which iron enters the brain and how those processes are regulated addresses significant global health issues. The existing paradigm assumes that the endothelial cells (ECs) forming the blood-brain barrier (BBB) serve as a simple conduit for transport of transferrin-bound iron. This concept is a significant oversimplification, at minimum failing to account for the iron needs of the ECs. Using an in vivo model of brain iron deficiency, the Belgrade rat, we show the distribution of transferrin receptors in brain microvasculature is altered in luminal, intracellular, and abluminal membranes dependent on brain iron status. We used a cell culture model of the BBB to show the presence of factors that influence iron release in non-human primate cerebrospinal fluid and conditioned media from astrocytes; specifically apo-transferrin and hepcidin were found to increase and decrease iron release, respectively. These data have been integrated into an interactive model where BBB ECs are central in the regulation of cerebral iron metabolism.

Journal ArticleDOI
TL;DR: Selective experimental disruption of NVC is associated with significant impairment of cognitive and sensorimotor function, recapitulating neurologic symptoms and signs observed in brain aging and pathophysiologic conditions associated with accelerated cerebromicrovascular aging.
Abstract: There is increasing evidence that vascular risk factors, including aging, hypertension, diabetes mellitus, and obesity, promote cognitive impairment; however, the underlying mechanisms remain obscure. Cerebral blood flow (CBF) is adjusted to neuronal activity via neurovascular coupling (NVC) and this mechanism is known to be impaired in the aforementioned pathophysiologic conditions. To establish a direct relationship between impaired NVC and cognitive decline, we induced neurovascular uncoupling pharmacologically in mice by inhibiting the synthesis of vasodilator mediators involved in NVC. Treatment of mice with the epoxygenase inhibitor N-(methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH), the NO synthase inhibitor l-NG-Nitroarginine methyl ester (L-NAME), and the COX inhibitor indomethacin decreased NVC by over 60% mimicking the aging phenotype, which was associated with significantly impaired spatial working memory (Y-maze), recognition memory (Novel object recognition), and impairment in motor coordination (Rotarod). Blood pressure (tail cuff) and basal cerebral perfusion (arterial spin labeling perfusion MRI) were unaffected. Thus, selective experimental disruption of NVC is associated with significant impairment of cognitive and sensorimotor function, recapitulating neurologic symptoms and signs observed in brain aging and pathophysiologic conditions associated with accelerated cerebromicrovascular aging.

Journal ArticleDOI
TL;DR: The evolution of diffusion changes show that CA1 diffusion lesions mirror the delayed time course of the pathophysiologic cascade typically observed in animal models.
Abstract: The CA1 (cornu ammonis) region of hippocampus is selectively vulnerable to a variety of metabolic and cytotoxic insults, which is mirrored in a delayed neuronal death of CA1 neurons. The basis and mechanisms of this regional susceptibility of CA1 neurons are poorly understood, and the correlates in human diseases affecting the hippocampus are not clear. Adopting a translational approach, the lesion evolution, temporal course, pattern of diffusion changes, and damage in hippocampal CA1 in acute neurologic disorders were studied using high-resolution magnetic resonance imaging. In patients with hippocampal ischemia (n=50), limbic encephalitis (n=30), after status epilepticus (n=17), and transient global amnesia (n=53), the CA1 region was selectively affected compared with other CA regions of the hippocampus. CA1 neurons exhibited a maximum decrease of apparent diffusion coefficient (ADC) 48 to 72 hours after the insult, irrespective of the nature of the insult. Hypoxic-ischemic insults led to a significant lower ADC suggesting that the ischemic insult results in a stronger impairment of cellular metabolism. The evolution of diffusion changes show that CA1 diffusion lesions mirror the delayed time course of the pathophysiologic cascade typically observed in animal models. Studying the imaging correlates of hippocampal damage in humans provides valuable insight into the pathophysiology and neurobiology of the hippocampus.

Journal ArticleDOI
TL;DR: Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier ‘leakiness' in neuroinflammation conditions.
Abstract: Pathologic conditions in the central nervous system, regardless of the underlying injury mechanism, show a certain level of blood–brain barrier (BBB) impairment. Endothelial dysfunction is the earliest event in the initiation of vascular damage caused by inflammation due to stroke, atherosclerosis, trauma, or brain infections. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators. The relationship between neuroinflammation and miRNA expression in brain endothelium remains unexplored. Previously, we showed the BBB-protective and anti-inflammatory effects of glycogen synthase kinase (GSK) 3β inhibition in brain endothelium in in vitro and in vivo models of neuroinflammation. Using microarray screening, we identified miRNAs induced in primary human brain microvascular endothelial cells after exposure to the pro-inflammatory cytokine, tumor necrosis factor-α, with/out GSK3β inhibition. Among the highly modified miRNAs, let-7 and miR-98 were predicted to target the inflammatory molecules, CCL2 and CCL5. Overexpression of let-7 and miR-98 in vitro and in vivo resulted in reduced leukocyte adhesion to and migration across endothelium, diminished expression of pro-inflammatory cytokines, and increased BBB tightness, attenuating barrier ‘leakiness’ in neuroinflammation conditions. For the first time, we showed that miRNAs could be used as a therapeutic tool to prevent the BBB dysfunction in neuroinflammation.

Journal ArticleDOI
TL;DR: The transient opening of the BBB after the insult is likely to contribute to the pathology but at the same time provides an opportunity for therapeutics to better reach the infarcted areas in the brain.
Abstract: Insults to the developing brain often result in irreparable damage resulting in long-term deficits in motor and cognitive functions The only treatment today for hypoxic-ischemic encephalopathy (HIE) in newborns is hypothermia, which has limited clinical benefit We have studied changes to the blood–brain barriers (BBB) as well as regional cerebral blood flow (rCBF) in a neonatal model of HIE to further understand the underlying pathologic mechanisms Nine-day old mice pups, brain roughly equivalent to the near-term human fetus, were subjected to hypoxia-ischemia Hypoxia-ischemia increased BBB permeability to small and large molecules within hours after the insult, which normalized in the following days The opening of the BBB was associated with changes to BBB protein expression whereas gene transcript levels were increased showing direct molecular damage to the BBB but also suggesting compensatory mechanisms Brain pathology was closely related to reductions in rCBF during the hypoxia as well as the areas with compromised BBB showing that these are intimately linked The transient opening of the BBB after the insult is likely to contribute to the pathology but at the same time provides an opportunity for therapeutics to better reach the infarcted areas in the brain

Journal ArticleDOI
TL;DR: Activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission, which supports the hypothesis that activation of inhibitory neurons can increase local cerebral bloodflow in a way that is not entirely dependent on levels of net ongoing neuronal activity.
Abstract: We investigated the link between direct activation of inhibitory neurons, local neuronal activity, and hemodynamics. Direct optogenetic cortical stimulation in the sensorimotor cortex of transgenic mice expressing Channelrhodopsin-2 in GABAergic neurons (VGAT-ChR2) greatly attenuated spontaneous cortical spikes, but was sufficient to increase blood flow as measured with laser speckle contrast imaging. To determine whether the observed optogenetically evoked gamma aminobutyric acid (GABA)-neuron hemodynamic responses were dependent on ionotropic glutamatergic or GABAergic synaptic mechanisms, we paired optogenetic stimulation with application of antagonists to the cortex. Incubation of glutamatergic antagonists directly on the cortex (NBQX and MK-801) blocked cortical sensory evoked responses (as measured with electroencephalography and intrinsic optical signal imaging), but did not significantly attenuate optogenetically evoked hemodynamic responses. Significant light-evoked hemodynamic responses were still present after the addition of picrotoxin (GABA-A receptor antagonist) in the presence of the glutamatergic synaptic blockade. This activation of cortical inhibitory interneurons can mediate large changes in blood flow in a manner that is by and large not dependent on ionotropic glutamatergic or GABAergic synaptic transmission. This supports the hypothesis that activation of inhibitory neurons can increase local cerebral blood flow in a manner that is not entirely dependent on levels of net ongoing neuronal activity.

Journal ArticleDOI
TL;DR: The data suggest that [18F]DPA-714 cannot be used for separating individual AD patients from heathy subjects, but further studies including TSPO binding status are needed to substantiate these findings.
Abstract: Fluorine-18 labelled N,N-diethyl-2-(2-[4-(2-fluoroethoxy)phenyl]-5,7-dimethylpyrazolo[1,5-α]pyrimidine-3-yl)acetamide ([(18)F]DPA-714) binds to the 18-kDa translocator protein (TSPO) with high affinity. The aim of this initial methodological study was to develop a plasma input tracer kinetic model for quantification of [(18)F]DPA-714 binding in healthy subjects and Alzheimer's disease (AD) patients, and to provide a preliminary assessment whether there is a disease-related signal. Ten AD patients and six healthy subjects underwent a dynamic positron emission tomography (PET) study along with arterial sampling and a scan protocol of 150 minutes after administration of 250 ± 10 MBq [(18)F]DPA-714. The model that provided the best fits to tissue time activity curves (TACs) was selected based on Akaike Information Criterion and F-test. The reversible two tissue compartment plasma input model with blood volume parameter was the preferred model for quantification of [(18)F]DPA-714 kinetics, irrespective of scan duration, volume of interest, and underlying volume of distribution (VT). Simplified reference tissue model (SRTM)-derived binding potential (BPND) using cerebellar gray matter as reference tissue correlated well with plasma input-based distribution volume ratio (DVR). These data suggest that [(18)F]DPA-714 cannot be used for separating individual AD patients from healthy subjects, but further studies including TSPO binding status are needed to substantiate these findings.

Journal ArticleDOI
TL;DR: The potential of the FUS method to mediate transport of proteins through the blood—brain barrier in a PD animal model is indicated.
Abstract: The blood–brain barrier (BBB) constitutes a major obstacle in brain drug delivery. Focused ultrasound (FUS) in conjunction with microbubbles has been shown to open the BBB noninvasively, locally, and transiently to allow large molecules diffusion. Neurturin (NTN), a member of the glial-derived neurotrophic factor (GDNF) family, has been demonstrated to have neuroprotective and regenerative effects on dopaminergic neurons in vivo using invasive drug delivery methods. The brain’s ascending nigrostriatal pathway is severely damaged in Parkinson’s disease (PD), and therefore the substantia nigra (SN) and striatal caudoputamen (CP) were selected as the target areas. The objective of the study was to investigate whether safe and efficient NTN delivery can be achieved through FUS-induced BBB opening via intravenous administration, and thus trigger the neuroregeneration cascade in the nigrostriatal pathway. After the optimization of FUS parameters and target locations in the murine brain, NTN bioavailability and downstream signaling were detected and characterized through immunostaining. FUS significantly enhanced the delivery of NTN compared with the direct injection technique, whereas triggering of the signaling cascade was detected downstream to the neuronal nuclei. These findings thus indicate the potential of the FUS method to mediate transport of proteins through the blood–brain barrier in a PD animal model.

Journal ArticleDOI
TL;DR: Evidence is evolving that cerebral hypoperfusion in MS is associated with chronic hypoxia, focal lesion formation, diffuse axonal degeneration, cognitive dysfunction, and fatigue, and Restoring CBF may emerge as a new therapeutic target in MS.
Abstract: The exact pathogenesis of multiple sclerosis (MS) is incompletely understood. Although auto-immune responses have an important role in the development of hallmark focal demyelinating lesions, the underlying mechanism of axonal degeneration, the other key player in MS pathology and main determinant of long-term disability, remains unclear and corresponds poorly with inflammatory disease activity. Perfusion-weighted imaging studies have demonstrated that there is a widespread cerebral hypoperfusion in patients with MS, which is present from the early beginning to more advanced disease stages. This reduced cerebral blood flow (CBF) does not seems to be secondary to loss of axonal integrity with decreased metabolic demands but appears to be mediated by elevated levels of the potent vasospastic peptide endothelin-1 in the cerebral circulation. Evidence is evolving that cerebral hypoperfusion in MS is associated with chronic hypoxia, focal lesion formation, diffuse axonal degeneration, cognitive dysfunction, and fatigue. Restoring CBF may therefore emerge as a new therapeutic target in MS.

Journal ArticleDOI
TL;DR: It is found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume, which led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests.
Abstract: Stroke is one of the leading causes of death. Growing evidence indicates that ketone bodies have beneficial effects in treating stroke, but their underlying mechanism remains unclear. Our previous study showed ketone bodies reduced reactive oxygen species by using NADH as an electron donor, thus increasing the NAD+/NADH ratio. In this study, we investigated whether mitochondrial NAD+-dependent Sirtuin 3 (SIRT3) could mediate the neuroprotective effects of ketone bodies after ischemic stroke. We injected mice with either normal saline or ketones (beta-hydroxybutyrate and acetoacetate) at 30 minutes after ischemia induced by transient middle cerebral artery (MCA) occlusion. We found that ketone treatment enhanced mitochondria function, reduced oxidative stress, and therefore reduced infarct volume. This led to improved neurologic function after ischemia, including the neurologic score and the performance in Rotarod and open field tests. We further showed that ketones' effects were achieved by upregulating N...

Journal ArticleDOI
TL;DR: It is shown that autoregulation can reliably be measured noninvasively in the microvasculature, opening up the possibility of localized CA monitoring with NIRS.
Abstract: Cerebral autoregulation (CA) is the mechanism that allows the brain to maintain a stable blood flow despite changes in blood pressure Dynamic CA can be quantified based on continuous measurements of systemic mean arterial pressure (MAP) and global cerebral blood flow Here, we show that dynamic CA can be quantified also from local measurements that are sensitive to the microvasculature We used near-infrared spectroscopy (NIRS) to measure temporal changes in oxy- and deoxy-hemoglobin concentrations in the prefrontal cortex of 11 human subjects A novel hemodynamic model translates those changes into changes of cerebral blood volume and blood flow The interplay between them is described by transfer function analysis, specifically by a high-pass filter whose cutoff frequency describes the autoregulation efficiency We have used pneumatic thigh cuffs to induce MAP perturbation by a fast release during rest and during hyperventilation, which is known to enhance autoregulation Based on our model, we found that the autoregulation cutoff frequency increased during hyperventilation in comparison to normal breathing in 10 out of 11 subjects, indicating a greater autoregulation efficiency We have shown that autoregulation can reliably be measured noninvasively in the microvasculature, opening up the possibility of localized CA monitoring with NIRS

Journal ArticleDOI
TL;DR: MCAO in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF), and FCG male mice were less sensitive to effects of hormones.
Abstract: Epidemiologic studies have shown sex differences in ischemic stroke. The four core genotype (FCG) mouse model, in which the testes determining gene, Sry, has been moved from Y chromosome to an autosome, was used to dissociate the effects of sex hormones from sex chromosome in ischemic stroke outcome. Middle cerebral artery occlusion (MCAO) in gonad intact FCG mice revealed that gonadal males (XXM and XYM) had significantly higher infarct volumes as compared with gonadal females (XXF and XYF). Serum testosterone levels were equivalent in adult XXM and XYM, as was serum estrogen in XXF and XYF mice. To remove the effects of gonadal hormones, gonadectomized FCG mice were subjected to MCAO. Gonadectomy significantly increased infarct volumes in females, while no change was seen in gonadectomized males, indicating that estrogen loss increases ischemic sensitivity. Estradiol supplementation in gonadectomized FCG mice rescued this phenotype. Interestingly, FCG male mice were less sensitive to effects of hormones. This may be due to enhanced expression of the transgene Sry in brains of FCG male mice. Sex differences in ischemic stroke sensitivity appear to be shaped by organizational and activational effects of sex hormones, rather than sex chromosomal complement.

Journal ArticleDOI
TL;DR: It is concluded that miR-29b could potentially predict stroke outcomes as a novel circulating biomarker, and miR -29b overexpression reduced BBB disruption after ischemic stroke via downregulating AQP-4.
Abstract: MicroRNA-29b (miR-29b) is involved in regulating ischemia process, but the molecular mechanism is unclear. In this work, we explored the function of miR-29b in cerebral ischemia. The level of miR-29b in white blood cells was evaluated in patients and mice after ischemic stroke. Brain infarct volume and National Institute of Health stroke scale (NIHSS) scores were analyzed to determine the relationship between miR-29b expression and the severity of stroke. The relationship of miR-29b and aquaporin-4 (AQP4) was further studied in mice. We found that miR-29b was significantly downregulated in stroke patients (P<0.05). MiR-29b level negatively associated with NIHSS scores (r=−0.349, P<0.01) and brain infarct volume (r=−0.321, P<0.05). In ischemic mice, miR-29b in the brain and blood were both downregulated (r=0.723, P<0.05). MiR-29b overexpression reduced infarct volume (49.50±6.55 versus 35.48±2.28 mm3, P<0.05), edema (164±4% versus 108±4%, P<0.05), and blood–brain barrier (BBB) disruption compared with controls (15±9% versus 7±3%, P<0.05). Aquaporin-4 expression greatly decreased after miR-29b overexpression (28±7% versus 11±3%, P<0.05). Dual-luciferase reporter system showed that AQP-4 was the direct target of miR-29b (P<0.05). We concluded that miR-29b could potentially predict stroke outcomes as a novel circulating biomarker, and miR-29b overexpression reduced BBB disruption after ischemic stroke via downregulating AQP-4.

Journal ArticleDOI
TL;DR: The clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury, which could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.
Abstract: Alzheimer's disease (AD) is the most common form of age-related dementias. In addition to genetics, environment, and lifestyle, growing evidence supports vascular contributions to dementias including dementia because of AD. Alzheimer's disease affects multiple cell types within the neurovascular unit (NVU), including brain vascular cells (endothelial cells, pericytes, and vascular smooth muscle cells), glial cells (astrocytes and microglia), and neurons. Thus, identifying and integrating biomarkers of the NVU cell-specific responses and injury with established AD biomarkers, amyloid-β (Aβ) and tau, has a potential to contribute to better understanding of the disease process in dementias including AD. Here, we discuss the existing literature on cerebrospinal fluid biomarkers of the NVU cell-specific responses during early stages of dementia and AD. We suggest that the clinical usefulness of established AD biomarkers, Aβ and tau, could be further improved by developing an algorithm that will incorporate biomarkers of the NVU cell-specific responses and injury. Such biomarker algorithm could aid in early detection and intervention as well as identify novel treatment targets to delay disease onset, slow progression, and/or prevent AD.

Journal ArticleDOI
TL;DR: The results indicate that the glutamatergic and GABAergic systems are coupled across thehealthy human brain, and that ALFF is related to glutamate use throughout the healthy human brain.
Abstract: Glucose metabolism has been associated with magnitude of blood oxygen level-dependent (BOLD) signal and connectivity across subjects within the default mode and dorsal attention networks. Similar correlations within subjects across the entire brain remain unexplored. [18F]-fluorodeoxyglucose positron emission tomography ([18F]-FDG PET), [11C]-flumazenil PET, and resting-state functional magnetic resonance imaging (fMRI) scans were acquired in eight healthy individuals and nine with temporal lobe epilepsy (TLE). Regional metabolic rate of glucose (rMRGlu) was correlated with amplitude of low frequency fluctuations (ALFFs) in the fMRI signal, global fMRI connectivity (GC), regional homogeneity (ReHo), and gamma-aminobutyric acid A–binding potential (GABAA BPND) across the brain. Partial correlations for ALFFs, GC, and ReHo with GABAA BPND were calculated, controlling for rMRGlu. In healthy subjects, significant positive correlations were observed across the brain between rMRGlu and ALFF, ReHo and GABAA BPND, and between ALFFs and GABAA BPND, controlling for rMRGlu. Brain-wide correlations between rMRGlu and ALFFs were significantly lower in TLE patients, and correlations between rMRGlu and GC were significantly greater in TLE than healthy subjects. These results indicate that the glutamatergic and GABAergic systems are coupled across the healthy human brain, and that ALFF is related to glutamate use throughout the healthy human brain. TLE may be a disorder of altered long-range connectivity in association with glutamate function.

Journal ArticleDOI
TL;DR: The results suggest that CCH induces a compensative mechanism attempting to maintain optimal CBF to the brain, however, this limited compensation cannot prevent neuronal loss and cognitive impairment after permanent ischemia.
Abstract: Chronic cerebral hypoperfusion (CCH) induces cognitive impairment, but the compensative mechanism of cerebral blood flow (CBF) is not fully understood. The present study mainly investigated dynamic changes in CBF, angiogenesis, and cellular pathology in the cortex, the striatum, and the cerebellum, and also studied cognitive impairment of rats induced by bilateral common carotid artery occlusion (BCCAO). Magnetic resonance imaging (MRI) techniques, immunochemistry, and Morris water maze were employed to the study. The CBF of the cortex, striatum, and cerebellum dramatically decreased after right common carotid artery occlusion (RCCAO), and remained lower level at 2 weeks after BCCAO. It returned to the sham level from 3 to 6 weeks companied by the dilation of vertebral arteries after BCCAO. The number of microvessels declined at 2, 3, and 4 weeks but increased at 6 weeks after BCCAO. Neuronal degeneration occurred in the cortex and striatum from 2 to 6 weeks, but the number of glial cells dramatically increased at 4 weeks after BCCAO. Cognitive impairment of ischemic rats was directly related to ischemic duration. Our results suggest that CCH induces a compensative mechanism attempting to maintain optimal CBF to the brain. However, this limited compensation cannot prevent neuronal loss and cognitive impairment after permanent ischemia.

Journal ArticleDOI
TL;DR: It is shown that a large peptide like the basic fibroblast growth factor (bFGF) and a small peptide inhibitor of caspase-3 (z-DEVD-FMK) can effectively be transported to the brain after systemic administration by incorporating these peptides to brain-targeted nanoparticles (NPs).
Abstract: Although growth factors and anti-apoptotic peptides have been shown to be neuroprotective in stroke models, translation of these experimental findings to clinic is hampered by limited penetration of peptides to the brain. Here, we show that a large peptide like the basic fibroblast growth factor (bFGF) and a small peptide inhibitor of caspase-3 (z-DEVD-FMK) can effectively be transported to the brain after systemic administration by incorporating these peptides to brain-targeted nanoparticles (NPs). Chitosan NPs were loaded with peptides and then functionalized by conjugating with antibodies directed against the transferrin receptor-1 on brain endothelia to induce receptor-mediated transcytosis across the blood–brain barrier (BBB). Pre-ischemic systemic administration of bFGF- or z-DEVD-FMK-loaded NPs significantly decreased the infarct volume after 2-hour middle cerebral artery occlusion and 22-hour reperfusion in mice. Co-administration of bFGF- or z-DEVD-FMK-loaded NPs reduced the infarct volume further and provided a 3-hour therapeutic window. bFGF-loaded NPs were histologically detected in the brain parenchyma and also restored ischemia-induced Akt dephosphorylation. The neuroprotection was not observed when receptor-mediated transcytosis was inhibited with imatinib or when bFGF-loaded NPs were not conjugated with the targeting antibody, which enables them to cross the BBB. Nanoparticles targeted to brain are promising drug carriers to transport large as well as small BBB-impermeable therapeutics for neuroprotection against stroke.

Journal ArticleDOI
TL;DR: Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.
Abstract: The differentiation of the vegetative or unresponsive wakefulness syndrome (VS/UWS) from the minimally conscious state (MCS) is an important clinical issue. The cerebral metabolic rate of glucose (CMRglc) declines when consciousness is lost, and may reveal the residual cognitive function of these patients. However, no quantitative comparisons of cerebral glucose metabolism in VS/UWS and MCS have yet been reported. We calculated the regional and whole-brain CMRglc of 41 patients in the states of VS/UWS (n=14), MCS (n=21) or emergence from MCS (EMCS, n=6), and healthy volunteers (n=29). Global cortical CMRglc in VS/UWS and MCS averaged 42% and 55% of normal, respectively. Differences between VS/UWS and MCS were most pronounced in the frontoparietal cortex, at 42% and 60% of normal. In brainstem and thalamus, metabolism declined equally in the two conditions. In EMCS, metabolic rates were indistinguishable from those of MCS. Ordinal logistic regression predicted that patients are likely to emerge into MCS at CMRglc above 45% of normal. Receiver-operating characteristics showed that patients in MCS and VS/UWS can be differentiated with 82% accuracy, based on cortical metabolism. Together these results reveal a significant correlation between whole-brain energy metabolism and level of consciousness, suggesting that quantitative values of CMRglc reveal consciousness in severely brain-injured patients.