scispace - formally typeset
Search or ask a question

Showing papers in "Naturwissenschaften in 2005"


Journal ArticleDOI
Florian P. Schiestl1
TL;DR: Concepts of pollination by deception, and in particular recent findings in the pollination syndromes of food deception and sexual deception in orchids, are reviewed.
Abstract: A standing enigma in pollination ecology is the evolution of pollinator attraction without offering reward in about one third of all orchid species. Here I review concepts of pollination by deception, and in particular recent findings in the pollination syndromes of food deception and sexual deception in orchids. Deceptive orchids mimic floral signals of rewarding plants (food deception) or mating signals of receptive females (sexual deception) to attract pollen vectors. In some food deceptive orchids, similarities in the spectral reflectance visible to the pollinator in a model plant and its mimic, and increased reproductive success of the mimic in the presence of the model have been demonstrated. Other species do not mimic specific model plants but attract pollinators with general attractive floral signals. In sexually deceptive orchids, floral odor is the key trait for pollinator attraction, and behaviorally active compounds in the orchids are identical to the sex pheromone of the pollinator species. Deceptive orchids often show high variability in floral signals, which may be maintained by negative frequency-dependent selection, since pollinators can learn and subsequently avoid common deceptive morphs more quickly than rare ones. The evolution of obligate deception in orchids seems paradoxical in the light of the typically lower fruit set than in rewarding species. Pollination by deception, however, can reduce self-pollination and encourage pollen flow over longer distances, thus promoting outbreeding. Although some food deceptive orchids are isolated through postzygotic reproductive barriers, sexually deceptive orchids lack post-mating barriers and species isolation is achieved via specific pollinator attraction. Recent population genetic and phylogenetic investigations suggest gene-flow within subgeneric clades, but pollinator-mediated selection may maintain species-specific floral traits.

319 citations


Journal ArticleDOI
TL;DR: The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression.
Abstract: (−)-Menthol is the most familiar of the monoterpenes as both a pure natural product and as the principal and characteristic constituent of the essential oil of peppermint (Mentha x piperita). In this paper, we review the biosynthesis and molecular genetics of (−)-menthol production in peppermint. In Mentha species, essential oil biosynthesis and storage is restricted to the peltate glandular trichomes (oil glands) on the aerial surfaces of the plant. A mechanical method for the isolation of metabolically functional oil glands, has provided a system for precursor feeding studies to elucidate pathway steps, as well as a highly enriched source of the relevant biosynthetic enzymes and of their corresponding transcripts with which cDNA libraries have been constructed to permit cloning and characterization of key structural genes. The biosynthesis of (−)-menthol from primary metabolism requires eight enzymatic steps, and involves the formation and subsequent cyclization of the universal monoterpene precursor geranyl diphosphate to the parent olefin (−)-(4S)-limonene as the first committed reaction of the sequence. Following hydroxylation at C3, a series of four redox transformations and an isomerization occur in a general “allylic oxidation–conjugate reduction” scheme that installs three chiral centers on the substituted cyclohexanoid ring to yield (−)-(1R, 3R, 4S)-menthol. The properties of each enzyme and gene of menthol biosynthesis are described, as are their probable evolutionary origins in primary metabolism. The organization of menthol biosynthesis is complex in involving four subcellular compartments, and regulation of the pathway appears to reside largely at the level of gene expression. Genetic engineering to up-regulate a flux-limiting step and down-regulate a side route reaction has led to improvement in the composition and yield of peppermint oil.

277 citations


Journal ArticleDOI
TL;DR: It is concluded that understanding the complex use of an animal’s range is crucial for conservation planning aiming to balance animal interests with those of human beings that co-habit in their range.
Abstract: Understanding how mammals satisfy their need for space in fragmenting ecosystems is crucial for ecosystem conservation. Using state-of-the-art global positioning system (GPS) technology we tracked 11 focal African elephants (Loxodonta africana) in Kenya at 3-hourly fix intervals and collected between 34 and 406 days per individual. Our recordings gave a high spatio-temporal resolution compared to previous studies and allowed novel insights into range use. The actual ranges of the tracked elephants are smaller than usually represented. Moreover, the ranges in our sample were complex and not confined to officially designated protected areas, except where fenced. All the unfenced elephants in our sample had distinct 'home sectors' linked by 'travel' corridors. Within each home sector the elephants concentrated in favourite 'core zones'. Such core zones tended to lie in protected areas whereas corridors typically crossed unprotected range. Elephants moved significantly faster along corridors than elsewhere in their range, which suggests awareness of danger outside the protected area. We conclude that understanding the complex use of an animal's range is crucial for conservation planning aiming to balance animal interests with those of human beings that co-habit in their range.

230 citations


Journal ArticleDOI
TL;DR: It is shown that the colorful carotenoid pigments that female zebra finches deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults.
Abstract: In egg-laying animals, mothers can influence the development of their offspring via the suite of biochemicals they incorporate into the nourishing yolk (eg lipids, hormones) However, the long-lasting fitness consequences of this early nutritional environment have often proved elusive Here, we show that the colorful carotenoid pigments that female zebra finches (Taeniopygia guttata) deposit into egg yolks influence embryonic and nestling survival, the sex ratio of fledged offspring, and the eventual ornamental coloration displayed by their offspring as adults Mothers experimentally supplemented with dietary carotenoids prior to egg-laying incorporated more carotenoids into eggs, which, due to the antioxidant activity of carotenoids, rendered their embryos less susceptible to free-radical attack during development These eggs were subsequently more likely to hatch, fledge offspring, produce more sons than daughters, and produce sons who exhibited more brightly colored carotenoid-based beak pigmentation Provisioned mothers also acquired more colorful beaks, which directly predicted levels of carotenoids found in eggs, thus indicating that these pigments may function not only as physiological ‘damage-protectants’ in adults and offspring but also as morphological signals of maternal reproductive capabilities

222 citations


Journal ArticleDOI
TL;DR: The effects of tannins on ruminants, the existence and significance of tANNin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin- degradation microorganisms have developed to counter the toxic effects ofTannin are reviewed.
Abstract: Tannins (hydrolyzable and condensed) are water-soluble polyphenolic compounds that exert antinutritional effects on ruminants by forming complexes with dietary proteins. They limit nitrogen supply to animals, besides inhibiting the growth and activity of ruminal microflora. However, some gastrointestinal microbes are able to break tannin–protein complexes while preferentially degrading hydrolyzable tannins (HTs). Streptococcus gallolyticus, Lonepinella koalarum and Selenomonas ruminantium are the dominant bacterial species that have the ability to degrade HTs. These tanninolytic microorganisms possess tannin-degrading ability and have developed certain mechanisms to tolerate tannins in feeds. Hence, selection of efficient tanninolytic microbes and transinoculation among animals for long-term benefits become areas of intensive interest. Here, we review the effects of tannins on ruminants, the existence and significance of tannin-degrading microorganisms in diverse groups of animals and the mechanisms that tannin-degrading microorganisms have developed to counter the toxic effects of tannin.

169 citations


Journal ArticleDOI
TL;DR: European robins, Erithacus rubecula, were tested under monochromatic 565 nm green light in 1.315 MHz fields of 0.48 μT during spring and autumn migration, supporting the assumption of a radical-pair mechanism underlying the processes mediating magnetic compass information in birds.
Abstract: The radical pair model of magnetoreception predicts that magnetic compass orientation can be disrupted by high frequency magnetic fields in the Megahertz range. European robins, Erithacus rubecula, were tested under monochromatic 565 nm green light in 1.315 MHz fields of 0.48 μT during spring and autumn migration, with 1.315 MHz being the frequency that matches the energetic splitting induced by the local geomagnetic field. The birds’ responses depended on the alignment of the oscillating field with respect to the static geomagnetic field: when the 1.315 MHz field was aligned parallel with the field lines, birds significantly preferred northerly directions in spring and southerly directions in autumn. These preferences reflect normal migratory orientation, with the variance slightly increased compared to control tests in the geomagnetic field alone or to tests in a 7.0 MHz field. However, in the 1.315 MHz field aligned at a 24° angle to the field lines, the birds were disoriented in both seasons, indicating that the high frequency field interfered with magnetoreception. These finding are in agreement with theoretical predictions and support the assumption of a radical-pair mechanism underlying the processes mediating magnetic compass information in birds.

159 citations


Journal ArticleDOI
TL;DR: A new eumaniraptoran theropod from China, with avian affinities, is reported, which also has long pennaceous feathers on its feet, suggesting that such morphology might represent a primitive adaptation close to the theropOD–bird transition.
Abstract: The unusual presence of long pennaceous feathers on the feet of basal dromaeosaurid dinosaurs has recently been presented as strong evidence in support of the arboreal–gliding hypothesis for the origin of bird flight, but it could be a unique feature of dromaeosaurids and thus irrelevant to the theropod–bird transition. Here, we report a new eumaniraptoran theropod from China, with avian affinities, which also has long pennaceous feathers on its feet. This suggests that such morphology might represent a primitive adaptation close to the theropod–bird transition. The long metatarsus feathers are likely primitive for Eumaniraptora and might have played an important role in the origin of avian flight.

133 citations


Journal ArticleDOI
TL;DR: The expression patterns of the three opsin mRNAs demonstrated that three distinct types ommatidia exist, refuting the common assumption that the o mmatidia composing the bee compound eye contain identical sets of spectral receptors.
Abstract: The honeybee compound eye is equipped with ultraviolet, blue, and green receptors, which form the physiological basis of a trichromatic color vision system. We studied the distribution of the spectral receptors by localizing the three mRNAs encoding the opsins of the ultraviolet-, blue- and green-absorbing visual pigments. The expression patterns of the three opsin mRNAs demonstrated that three distinct types ommatidia exist, refuting the common assumption that the ommatidia composing the bee compound eye contain identical sets of spectral receptors. We found that type I ommatidia contain one ultraviolet and one blue receptor, type II ommatidia contain two ultraviolet receptors, and type III ommatidia have two blue receptors. All the three ommatidial types contain six green receptors. The ommatidia appear to be distributed rather randomly over the retina. The ratio of type I, II, and III ommatidia was about 44:46:10. Type III ommatidia appeared to be slightly more frequent (18%) in the anterior part of the ventral region of the eye. Retinal heterogeneity and ommatidial randomness, first clearly demonstrated in butterflies, seems to be a common design principle of the eyes of insects.

126 citations


Journal ArticleDOI
TL;DR: The biophysical studies that have elucidated the various morphologies assumed by these lipid mixtures are examined, and their use in the biochemical studies of biomolecules is examined.
Abstract: Over the past decade “bicellar” lipid mixtures composed of the long-chain dimyristoyl phosphatidylcholine (DMPC) and the short-chain dihexanoyl PC (DHPC) molecules have emerged as a powerful medium for studying membrane associated, biologically relevant macromolecules and assemblies. Depending on temperature, lipid concentration and composition these lipid mixtures can assume a variety of morphologies, some of them alignable in the presence of a magnetic field. This article will examine the biophysical studies that have elucidated the various morphologies assumed by these lipid mixtures, and their use in the biochemical studies of biomolecules.

124 citations


Journal ArticleDOI
TL;DR: Recent progress in understanding snail chirality is reviewed, suggesting that chiral reversal must sometimes occur, but it is rarely likely to lead to so-called ‘single-gene’ speciation and is an important target for future research.
Abstract: The direction that a snail (Mollusca: Gastropoda) coils, whether dextral (right-handed) or sinistral (left-handed), originates in early development but is most easily observed in the shell form of the adult. Here, we review recent progress in understanding snail chirality from genetic, developmental and ecological perspectives. In the few species that have been characterized, chirality is determined by a single genetic locus with delayed inheritance, which means that the genotype is expressed in the mother's offspring. Although research lags behind the studies of asymmetry in the mouse and nematode, attempts to isolate the loci involved in snail chirality have begun, with the final aim of understanding how the axis of left–right asymmetry is established. In nature, most snail taxa (>90%) are dextral, but sinistrality is known from mutant individuals, populations within dextral species, entirely sinistral species, genera and even families. Ordinarily, it is expected that strong frequency-dependent selection should act against the establishment of new chiral types because the chiral minority have difficulty finding a suitable mating partner (their genitalia are on the ‘wrong’ side). Mixed populations should therefore not persist. Intriguingly, however, a very few land snail species, notably the subgenus Amphidromus sensu stricto, not only appear to mate randomly between different chiral types, but also have a stable, within-population chiral dimorphism, which suggests the involvement of a balancing factor. At the other end of the spectrum, in many species, different chiral types are unable to mate and so could be reproductively isolated from one another. However, while empirical data, models and simulations have indicated that chiral reversal must sometimes occur, it is rarely likely to lead to so-called ‘single-gene’ speciation. Nevertheless, chiral reversal could still be a contributing factor to speciation (or to divergence after speciation) when reproductive character displacement is involved. Understanding the establishment of chirality, the preponderance of dextral species and the rare instances of stable dimorphism is an important target for future research. Since the genetics of chirality have been studied in only a few pulmonate species, we also urge that more taxa, especially those from the sea, should be investigated.

116 citations


Journal ArticleDOI
TL;DR: It is suggested that carcharodontosaurid radiated in Gondwana sharing with spinosaurids the role of top-predators until their extinction in Cenomanian–Turonian times, and offers a better understanding of the evolution of Southern theropod faunas.
Abstract: The Cretaceous Carcharodontosauridae is the latest clade of carnosaurs, including the largest predatory dinosaurs yet recorded. Albeit spectacular for their size, the skeletal anatomy of these theropods remains poorly-known, and their diversity was until recently restricted to two Cenomanian species: the highly derived Giganotosaurus carolinii, from southern South America, and the incompletely known Carcharodontosaurus saharicus, from northern Africa. Here we describe an older and basal member of the group, Tyrannotitan chubutensis gen. et sp. nov., from Aptian strata of Patagonia, Argentina. The new taxon gives new insights into the systematics and evolution of carcharodontosaurids and offers a better understanding of the evolution of Southern theropod faunas. We suggest that carcharodontosaurids radiated in Gondwana sharing with spinosaurids the role of top-predators until their extinction in Cenomanian–Turonian times. During this interval, the diplodocoid sauropods and giant titanosaurians went extinct (probably as part of a global-scale crisis), and the smaller abelisaurid theropods took dominance, reigning until the end of the Cretaceous. Electronic Supplementary Material is available.

Journal ArticleDOI
TL;DR: Both species of honeybees have a thermal safety factor in heat-killing such wasp predators, and the results show remarkable thermal fine-tuning in a co-evolving predator–prey relationship.
Abstract: Defensiveness of honeybee colonies of Apis cerana and Apis mellifera (actively balling the wasps but reduction of foraging) against predatory wasps, Vespa velutina, and false wasps was assessed. There were significantly more worker bees in balls of the former than latter. Core temperatures in a ball around a live wasp of A. cerana were significantly higher than those of A. mellifera, and also significantly more when exposed to false wasps. Core temperatures of bee balls exposed to false wasps were significantly lower than those exposed to V. velutina for both A. cerana and for A. mellifera. The lethal thermal limits for V. velutina, A. cerana and A. mellifera were significantly different, so that both species of honeybees have a thermal safety factor in heat-killing such wasp predators. During wasps attacks at the hives measured at 3, 6 and 12 min, the numbers of Apis cerana cerana and Apis cerana indica bees continuing to forage were significantly reduced with increased wasp attack time. Tropical lowland A. c. indica reduced foraging rates significantly more than the highland A. c. cerana bees; but, there was no significant effect on foraging by A. mellifera. The latency to recovery of honeybee foraging was significantly greater the longer the duration of wasp attacks. The results show remarkable thermal fine-tuning in a co-evolving predator-prey relationship.

Journal ArticleDOI
TL;DR: This study reports the first characterization of prey and prey host odor reception in two species of lacewings, Chrysoperla carnea and Chrysopa oculata, and single sensillum recordings showed that the olfactory neurons of C. carnea responded to both 2-phenylethanol and aphid sex pheromone components, but those ofC.
Abstract: It is well documented that host-related odors enable many species of parasitoids and predatory insects to locate their prey and prey habitats. This study reports the first characterization of prey and prey host odor reception in two species of lacewings, Chrysoperla carnea (Say) and Chrysopa oculata L. 2-Phenylethanol, one of the volatiles emitted from their prey's host plants (alfalfa and corn) evoked a significant EAG response from antennae of C. carnea. Traps baited with this compound attracted high numbers of adult C. carnea, which were predominantly females. One of the sex pheromone components (1R,4aS,7S,7aR)-nepetalactol of an aphid species, Acyrthosiphon pisum (Harris) attracted only C. oculata adults. Single sensillum recordings showed that the olfactory neurons of C. carnea responded to both 2-phenylethanol and aphid sex pheromone components, but those of C. oculata only responded to the latter.

Journal ArticleDOI
TL;DR: It is found that the bats only respond to the sounds of arctiids when they are paired with defensive chemistry, and the sounds are in essence a warning to the bats that the moth is unpalatable—an aposematic signal.
Abstract: The night sky is the venue for an ancient arms race. Insectivorous bats with their ultrasonic sonar exert an enormous selective pressure on nocturnal insects. In response insects have evolved the ability to hear bat cries, to evade their hunting maneuvers, and some, the tiger moths (Arctiidae), to utter an ultrasonic reply. We here determine what it is that tiger moths “say” to bats. We chose four species of arctiid moths, Cycnia tenera, Euchaetes egle, Utetheisa ornatrix, and Apantesis nais, that naturally differ in their levels of unpalatability and their ability to produce sound. Moths were tethered and offered to free-flying naive big brown bats, Eptesicus fuscus. The ability of the bats to capture each species was compared to their ability to capture noctuid, geometrid, and wax moth controls over a learning period of 7 days. We repeated the experiment using the single arctiid species E. egle that through diet manipulation and simple surgery could be rendered palatable or unpalatable and sound producing or mute. We again compared the capture rates of these categories of E. egle to control moths. Using both novel learning approaches we have found that the bats only respond to the sounds of arctiids when they are paired with defensive chemistry. The sounds are in essence a warning to the bats that the moth is unpalatable—an aposematic signal.

Journal ArticleDOI
TL;DR: It is suggested that hearing in large dinosaurs was restricted to low frequencies with a high-frequency limit below 3 Hz, based on the regression analysis of two significant correlations in living archosaurs.
Abstract: The inner ear in the group of archosaurs (birds, crocodilians, and extinct dinosaurs) shows a high degree of structural similarity, enabling predictions of their function in extinct species based on relationships among similar variables in living birds. Behavioral audiograms and morphological data on the length of the auditory sensory epithelium (the basilar papilla) are available for many avian species. By bringing different data sets together, we show that body mass and the size of the basilar papilla are significantly correlated, and the most sensitive frequency in a given species is inversely related to the body mass and the length of the basilar papilla. We also demonstrate that the frequency of best hearing is correlated with the high-frequency limit of hearing. Small species with a short basilar papilla hear higher frequencies compared with larger species with a longer basilar papilla. Based on the regression analysis of two significant correlations in living archosaurs (best audiogram frequency vs body mass and best audiogram frequency vs papillar length), we suggest that hearing in large dinosaurs was restricted to low frequencies with a high-frequency limit below 3 kHz.

Journal ArticleDOI
TL;DR: The navel orangeworm sex pheromone is also an attractant for the meal moth, Pyralis farinalis L. (Pyralidae), but (Z,Z)-11,13-hexadecadien-1-yl acetate is a behavioral antagonist, which may be highly effective in mating disruption and monitoring programs.
Abstract: Using molecular- and sensory physiology-based approaches, three novel natural products, a simple ester, and a behavioral antagonist have been identified from the pheromone gland of the navel orangeworm, Amyelois transitella Walker (Lepidoptera: Pyralidae). In addition to the previously identified (Z,Z)-11,13-hexadecadienal, the pheromone blend is composed of (Z,Z,Z,Z,Z)-3,6,9,12,15-tricosapentaene, (Z,Z,Z,Z,Z)-3,6,9,12,15-pentacosapentaene, ethyl palmitate, ethyl-(Z,Z)-11,13-hexadecadienoate, and (Z,Z)-11,13-hexadecadien-1-yl acetate. The C23 and C25 pentaenes are not only novel sex pheromones, but also new natural products. In field tests, catches of A. transitella males in traps baited with the full mixture of pheromones were as high as those in traps with virgin females, whereas control and traps baited only with the previously known constituent did not capture any moths at all. The navel orangeworm sex pheromone is also an attractant for the meal moth, Pyralis farinalis L. (Pyralidae), but (Z,Z)-11,13-hexadecadien-1-yl acetate is a behavioral antagonist. The new pheromone blend may be highly effective in mating disruption and monitoring programs.

Journal ArticleDOI
TL;DR: The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging, which suggests independent evolutionary roots of food recruitment in these two groups of bees.
Abstract: When the frenzied and irregular food-recruitment dances of bumblebees were first discovered, it was thought that they might represent an evolutionary prototype to the honeybee waggle dance. It later emerged that the primary function of the bumblebee dance was the distribution of an alerting pheromone. Here, we identify the chemical compounds of the bumblebee recruitment pheromone and their behaviour effects. The presence of two monoterpenes and one sesquiterpene (eucalyptol, ocimene and farnesol) in the nest airspace and in the tergal glands increases strongly during foraging. Of these, eucalyptol has the strongest recruitment effect when a bee nest is experimentally exposed to it. Since honeybees use terpenes for marking food sources rather than recruiting foragers inside the nest, this suggests independent evolutionary roots of food recruitment in these two groups of bees.

Journal ArticleDOI
TL;DR: A significant negative relationship between plumage hue and clearance of disease is found: males with redder plumage cleared MG infection significantly better than did males with yellower plumage.
Abstract: The Hamilton-Zuk hypothesis proposes that the bright colours displayed by many species of birds serve as signals of individual resistance to parasites. Despite the popularity of this hypothesis, only one previous study has tested whether plumage coloration predicts how individuals respond to a disease challenge. We inoculated 24 male house finches (Carpodacus mexicanus) of variable plumage hue with a novel bacterial pathogen, Mycoplasma gallicepticum (MG). We found no relationship between plumage hue and time to first symptoms following inoculation, but we found a significant negative relationship between plumage hue and clearance of disease: males with redder plumage cleared MG infection significantly better than did males with yellower plumage. The hue of carotenoid-based plumage coloration has been shown to be a primary criterion in female mate choice in the house finch. These observations suggest that one benefit to females for choosing redder males is obtaining mates with better resistance to parasites.

Journal ArticleDOI
TL;DR: This work suggests that signal receivers of the natural patterns the authors examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots, which have triggered the convergence of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.
Abstract: Several recent hypotheses, including sensory drive and sensory exploitation, suggest that receiver biases may drive selection of biological signals in the context of sexual selection. Here we suggest that a similar mechanism may have led to convergence of patterns in flowers, stingless bee nest entrances, and pitchers of insectivorous plants. A survey of these non-related visual stimuli shows that they share features such as stripes, dark centre, and peripheral dots. Next, we experimentally show that in stingless bees the close-up approach to a flower is guided by dark centre preference. Moreover, in the approach towards their nest entrance, they have a spontaneous preference for entrance patterns containing a dark centre and disrupted ornamentation. Together with existing empirical evidence on the honeybee's and other insects' orientation to flowers, this suggests that the signal receivers of the natural patterns we examined, mainly Hymenoptera, have spontaneous preferences for radiating stripes, dark centres, and peripheral dots. These receiver biases may have evolved in other behavioural contexts in the ancestors of Hymenoptera, but our findings suggest that they have triggered the convergent evolution of visual stimuli in floral guides, stingless bee nest entrances, and insectivorous pitchers.

Journal ArticleDOI
TL;DR: The present hypothesis strongly supports a sister group relationship of pseudo-toothed birds (Odontopterygiformes) and waterfowls (Anseriformes), which are the sister group of Neoaves and the Galloanserae (Galliformes plus Anseriforme) are monophyletic.
Abstract: The phylogenetic affinities of the extinct pseudo-toothed birds have remained controversial. Some authors noted that they resemble both pelicans and allies (Pelecaniformes) and tube-nosed birds (Procellariiformes), but assigned them to a distinct taxon, the Odontopterygiformes. In most recent studies, the pseudo-toothed birds are referred to the family Pelagornithidae inside the Pelecaniformes. Here, I perform a cladistic analysis with five taxa of the pseudo-toothed birds including two undescribed new species from the Early Tertiary of Morocco. The present hypothesis strongly supports a sister group relationship of pseudo-toothed birds (Odontopterygiformes) and waterfowls (Anseriformes). The Odontoanserae (Odontopterygiformes plus Anseriformes) are the sister group of Neoaves. The placement of the landfowls (Galliformes) as the sister taxon of all other neognathous birds does not support the consensus view that the Galloanserae (Galliformes plus Anseriformes) are monophyletic.

Journal ArticleDOI
TL;DR: Serotonin and dopamine levels were significantly correlated with worker age: both increased as minor workers matured, and serotonin rose significantly in the oldest ants, suggesting an involvement of neuromodulators in minor worker behavioral ontogeny and temporal polyethism in P. dentata.
Abstract: The behavioral development of minor workers of the ant Pheidole dentata involves a progression of tasks beginning with brood care and culminating in foraging as individuals age. To understand the role of brain neurochemistry in age-related division of labor, we measured the levels of serotonin, dopamine and octopamine in individual brains of minor workers of different age. Serotonin and dopamine levels were significantly correlated with worker age: both increased as minor workers matured, and serotonin rose significantly in the oldest ants. In addition, the serotonin:dopamine ratio was significantly higher in the oldest workers. Octopamine levels did not change with age, although the ratios of octopamine:serotonin and octopamine:dopamine were significantly higher in the youngest workers. These age-associated changes in biogenic amine levels suggest an involvement of neuromodulators in minor worker behavioral ontogeny and temporal polyethism in P. dentata.

Journal ArticleDOI
TL;DR: Experimental results suggest for the first time that piscivory of Eurasian perch is negatively influenced by different sources of turbidity, and hence low visibility might delay the onset of the food niche shift to fish prey.
Abstract: Turbidity can strongly influence predation success of visually oriented fish, especially piscivores such as adult Eurasian perch (Perca fluviatilis). This purely carnivorous species usually becomes a facultative piscivore after two discrete food niche shifts. Perch biomass has been observed to decrease in lakes along the productivity gradient, and then be replaced by cyprinids in non-manipulated eutrophic systems. Until now, this change has been mainly attributed to the competitive superiority of cyprinids for zooplankton prey during the juvenile phase of perch, while the piscivorous phase—as a possible factor influencing the recruitment success of perch—has been neglected. As the abundance of suitably sized prey fish should not be limiting in highly productive systems, we hypothesise that the switch from benthivorous feeding to preying on fish is inhibited by the reduced visibility in eutrophic lakes. We tested this hypothesis in laboratory experiments, where perch were fed two size classes of juvenile cyprinids at different phytoplankton- and bentonite-induced turbidity levels. Predation success was significantly influenced by turbidity level and turbidity source, but not by prey size. These experimental results suggest for the first time that piscivory of Eurasian perch is negatively influenced by different sources of turbidity, and hence low visibility might delay the onset of the food niche shift to fish prey.

Journal ArticleDOI
TL;DR: The account of the unusual predominance of even numbered n-alkanes/alkenes in surface sediments from the Niger Delta of Nigeria is given and contributes to the information on the rare occurrence of such distributions in the geosphere.
Abstract: We report the geochemical characterisation of hydrocarbons extracted from surface sediments of the Calabar River and coastal soils, SE Niger Delta, Nigeria using gas chromatography–mass spectrometry (GC–MS). As a result, a special group of organic compounds prevalent in the entire study area was identified. It consists of aliphatic hydrocarbons (7.3–22.2% of the total lipids) with several distinctive chemical features. These include a high abundance of even numbered n-alkanes (n-C12–n-C26, maximising at n-C18, n-C20 and n-C22), n-alk-1-enes (n-C14:1–n-C26:1, maximising at n-C18:1 and n-C20:1), giving rise to Carbon Preference Indices (CPIs) between 0.15 and 0.82. An unresolved complex mixture (UCM) occurring in the range n-C18–n-C35, and the presence of hopanes indicate petroleum contamination. The predominance of even numbered n-alkanes in the Calabar River sediments are thought to be derived from inputs of different microorganisms inhabiting an oil-polluted environment and contributing to the organic matter (OM). This paper, for the first time, gives an account of the unusual predominance of even numbered n-alkanes/alkenes in surface sediments from the Niger Delta of Nigeria and thus contributes to the information on the rare occurrence of such distributions in the geosphere.

Journal ArticleDOI
TL;DR: It is shown that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.
Abstract: The queen is the dominant female in the honeybee colony, Apis mellifera, and controls reproduction. Queen larvae are selected by the workers and are fed a special diet (royal jelly), which determines caste. Because queens mate with many males a large number of subfamilies coexist in the colony. As a consequence, there is a considerable potential for conflict among the subfamilies over queen rearing. Here we show that honeybee queens are not reared at random but are preferentially reared from rare “royal” subfamilies, which have extremely low frequencies in the colony's worker force but a high frequency in the queens reared.

Journal ArticleDOI
TL;DR: It is suggested that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species, and chemical uniformity coupled with low intraspecific but high interspecific aggression lend credence to the latter hypothesis.
Abstract: Unicoloniality emerges as a feature that characterizes successful invasive species. Its underlying mechanism is reduced intraspecific aggression while keeping interspecific competitiveness. To that effect, we present here a comparative behavioural and chemical study of the invasive ant Wasmannia auropunctata in parts of its native and introduced ranges. We tested the hypothesis that introduced populations (New Caledonia archipelago) have reduced intraspecific aggression relative to native populations (e.g., Ilheus area, Brazil) and that this correlates with reduced variability in cuticular hydrocarbons (CHCs). As predicted, there was high intraspecific aggression in the Brazilian populations, but no intraspecific aggression among the New Caledonian populations. However, New Caledonian worker W. auropunctata remained highly aggressive towards ants of other invasive species. The chemical data corresponded with the behaviour. While CHCs of ants from the regions of Brazil diverged, the profiles of ants from various localities in New Caledonia showed high uniformity. We suggest that in New Caledonia W. auropunctata appears to behave as a single supercolony, whereas in its native range it acts as a multicolonial species. The uniformity of recognition cues in the New Caledonia ants may reflect a process whereby recognition alleles became fixed in the population, but may also be the consequence of a single introduction event and subsequent aggressive invasion of the ecosystem. Chemical uniformity coupled with low intraspecific but high interspecific aggression, lend credence to the latter hypothesis.

Journal ArticleDOI
TL;DR: In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications.
Abstract: Biomolecules are vitally important elements in nanoscale science and also in future nanotechnology. Their shape and their chemical and physical functionality can give them a big advantage over inorganic and organic substances. While this becomes most obvious in proteins and peptides, with their complicated, but easily controlled chemistry, other biomolecular substances such as DNA, lipids and carbohydrates can also be important. In this review, the emphasis is on one-dimensional molecules and on molecules that self-assemble into linear structures, and on their potential applications. An important aspect is that biomolecules can act as templates, i.e. their shape and chemical properties can be employed to arrange inorganic substances – such as metals or metal compounds – on the nanometre scale. In particular, rod- and tube-like nanostructures can show physical properties that are different from those of the bulk material, and thus these structures are likely to be a basis for new technology.

Journal ArticleDOI
TL;DR: An overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer are presented.
Abstract: In the post-genome-sequencing era, emerging genomic technologies are shifting the paradigm for drug discovery and development. Nevertheless, drug discovery and development still remain high-risk and high-stakes ventures with long and costly timelines. Indeed, the attrition of drug candidates in preclinical and development stages is a major problem in drug design. For at least 30% of the candidates, this attrition is due to poor pharmacokinetics and toxicity. Thus, pharmaceutical companies have begun to seriously re-evaluate their current strategies of drug discovery and development. In that light, we propose that a transport mechanism-based design might help to create new, pharmacokinetically advantageous drugs, and as such should be considered an important component of drug design strategy. Performing enzyme- and/or cell-based drug transporter, interaction tests may greatly facilitate drug development and allow the prediction of drug–drug interactions. We recently developed methods for high-speed functional screening and quantitative structure–activity relationship analysis to study the substrate specificity of ABC transporters and to evaluate the effect of genetic polymorphisms on their function. These methods would provide a practical tool to screen synthetic and natural compounds, and these data can be applied to the molecular design of new drugs. In this review article, we present an overview on the genetic polymorphisms of human ABC transporter ABCG2 and new camptothecin analogues that can circumvent AGCG2-associated multidrug resistance of cancer.

Journal ArticleDOI
TL;DR: It is argued that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic and does not preclude the signalling role of conspicuous spines in the sexual arena.
Abstract: Spines serve as a common physical defence mechanism in both the plant and animal kingdoms. Here we argue that as in plants, defensive animal spines are often conspicuous (shape and colour) and should be considered aposematic. Conspicuous spines may evolve as signals or serve as a cue for potential predators. Spine conspicuousness in animals has evolved independently across and within phyla occupying aquatic and terrestrial ecosystems, indicating that this convergent phenomenon is highly adaptive. Still, many spines are cryptic, suggesting that conspicuity is not simply constrained by developmental factors such as differences in the chemical composition of the integument. Aposematism does not preclude the signalling role of conspicuous spines in the sexual arena.

Journal ArticleDOI
TL;DR: The data support the recognition of at least five species from within P. australis under various criteria, and suggest Pleistocene dispersal and recent ecomorph evolution.
Abstract: King brown snakes or mulga snakes (Pseudechis australis) are the largest and among the most dangerous and wide-ranging venomous snakes in Australia and New Guinea. They occur in diverse habitats, are important predators, and exhibit considerable morphological variation. We infer the relationships and historical biogeography of P. australis based on phylogenetic analysis of 1,249 base pairs from the mitochondrial cytochrome b, NADH dehydrogenase subunit 4 and three adjacent tRNA genes using Bayesian, maximum-likelihood, and maximum-parsimony methods. All methods reveal deep phylogenetic structure with four strongly supported clades comprising snakes from New Guinea (I), localities all over Australia (II), the Kimberleys of Western Australia (III), and north-central Australia (IV), suggesting a much more ancient radiation than previously believed. This conclusion is robust to different molecular clock estimations indicating divergence in Pliocene or Late Miocene, after landbridge dispersal to New Guinea had occurred. While members of clades I, III and IV are medium-sized, slender snakes, those of clade II attain large sizes and a robust build, rendering them top predators in their ecosystems. Genetic differentiation within clade II is low and haplotype distribution largely incongruent with geography or colour morphs, suggesting Pleistocene dispersal and recent ecomorph evolution. Significant haplotype diversity exists in clades III and IV, implying that clade IV comprises two species. Members of clade II are broadly sympatric with members of both northern Australian clades. Thus, our data support the recognition of at least five species from within P. australis (auct.) under various criteria. We discuss biogeographical, ecological and medical implications of our findings.

Journal ArticleDOI
TL;DR: The findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts.
Abstract: The sesquiterpene, (E)-β-farnesene, is used by many aphid species as an alarm pheromone to warn related individuals of predation. Disturbed cotton aphids, Aphis gossypii Glover, released (E)-β-farnesene into the air as detected by solid phase microextraction and gas chromatography mass spectrometry (GC–MS). Solvent extracts of cotton aphids of various life stages and weights also were analyzed by GC–MS for sums of ions 69 and 93, which discriminated (E)-β-farnesene from coeluting compounds. Aphids of all life stages and sizes reared on cotton plants in both an environmental chamber and glasshouse contained (E)-β-farnesene in amounts ranging from 0.1 to 1.5 ng per individual. The quantities of (E)-β-farnesene in aphids increased in relation to increasing body weight, and variation in individual weights explained about 82% of the variation in alarm pheromone. However, the concentrations (ng/mg fresh weight) declined exponentially with increasing body weight. These findings indicate that aphid nymphs try to compensate for their smaller size by producing relatively more pheromone per weight than adults but still cannot approach an evolutionary optimal load, as assumed in adults with the greatest total amounts. This suggests that young aphids need to balance costs of growth and maturation with costs of producing the alarm pheromone.