scispace - formally typeset
Search or ask a question

Showing papers in "Progress in Brain Research in 2014"


Book ChapterDOI
TL;DR: This work examines the relevance of multiple learning mechanisms for sensorimotor learning, including processes involving repetition, reinforcement learning, and strategy utilization, and how this structure interacts with other neural systems to support motor learning.
Abstract: Traditionally, motor learning has been studied as an implicit learning process, one in which movement errors are used to improve performance in a continuous, gradual manner. The cerebellum figures prominently in this literature given well-established ideas about the role of this system in error-based learning and the production of automatized skills. Recent developments have brought into focus the relevance of multiple learning mechanisms for sensorimotor learning. These include processes involving repetition, reinforcement learning, and strategy utilization. We examine these developments, considering their implications for understanding cerebellar function and how this structure interacts with other neural systems to support motor learning. Converging lines of evidence from behavioral, computational, and neuropsychological studies suggest a fundamental distinction between processes that use error information to improve action execution or action selection. While the cerebellum is clearly linked to the former, its role in the latter remains an open question.

167 citations


Book ChapterDOI
TL;DR: The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system as discussed by the authors.
Abstract: The γ-aminobutyric acid receptor type A (GABAA receptor) is a ligand-gated chloride channel that mediates major inhibitory functions in the central nervous system. GABAA receptors function mainly as pentamers containing α, β, and either γ or δ subunits. A number of antiepileptic drugs have agonistic effects on GABAA receptors. Hence, dysfunctions of GABAA receptors have been postulated to play important roles in the etiology of epilepsy. In fact, mutations or genetic variations of the genes encoding the α1, α6, β2, β3, γ2, or δ subunits (GABRA1, GABRA6, GABRB2, GABRB3, GABRG2, and GABRD, respectively) have been associated with human epilepsy, both with and without febrile seizures. Epilepsy resulting from mutations is commonly one of following, genetic (idiopathic) generalized epilepsy (e.g., juvenile myoclonic epilepsy), childhood absence epilepsy, genetic epilepsy with febrile seizures, or Dravet syndrome. Recently, mutations of GABRA1, GABRB2, and GABRB3 were associated with infantile spasms and Lennox–Gastaut syndrome. These mutations compromise hyperpolarization through GABAA receptors, which is believed to cause seizures. Interestingly, most of the insufficiencies are not caused by receptor gating abnormalities, but by complex mechanisms, including endoplasmic reticulum (ER)-associated degradation, nonsense-mediated mRNA decay, intracellular trafficking defects, and ER stress. Thus, GABAA receptor subunit mutations are now thought to participate in the pathomechanisms of epilepsy, and an improved understanding of these mutations should facilitate our understanding of epilepsy and the development of new therapies.

119 citations


Book ChapterDOI
TL;DR: There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations should deliver much needed knowledge of these events.
Abstract: Olfactory system neural oscillations as seen in the local field potential have been studied for many decades. Recent research has shown that there is a functional role for the most studied gamma oscillations (40–100 Hz in rats and mice, and 20 Hz in insects), without which fine odor discrimination is poor. When these oscillations are increased artificially, fine discrimination is increased, and when rats learn difficult and highly overlapping odor discriminations, gamma is increased in power. Because of the depth of study on this oscillation, it is possible to point to specific changes in neural firing patterns as represented by the increase in gamma oscillation amplitude. However, we know far less about the mechanisms governing beta oscillations (15–30 Hz in rats and mice), which are best associated with associative learning of responses to odor stimuli. These oscillations engage every part of the olfactory system that has so far been tested, plus the hippocampus, and the beta oscillation frequency band is the one that is most reliably coherent with other regions during odor processing. Respiratory oscillations overlapping with the theta frequency band (2–12 Hz) are associated with odor sniffing and normal breathing in rats. They also show coupling in some circumstances between olfactory areas and rare coupling between the hippocampus and olfactory bulb. The latter occur in specific learning conditions in which coherence strength is negatively or positively correlated with performance, depending on the task. There is still much to learn about the role of neural oscillations in learning and memory, but techniques that have been brought to bear on gamma oscillations (current source density, computational modeling, slice physiology, behavioral studies) should deliver much needed knowledge of these events.

117 citations


Book ChapterDOI
TL;DR: Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission, and targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.
Abstract: Alterations in dopamine (DA) neurotransmission in Parkinson's disease are well known and widely studied. Much less is known about DA changes that accompany and underlie some of the symptoms of Huntington's disease (HD), a dominant inherited neurodegenerative disorder characterized by chorea, cognitive deficits, and psychiatric disturbances. The cause is an expansion in CAG (glutamine) repeats in the HTT gene. The principal histopathology of HD is the loss of medium-sized spiny neurons (MSNs) and, to a lesser degree, neuronal loss in cerebral cortex, thalamus, hippocampus, and hypothalamus. Neurochemical, electrophysiological, and behavioral studies in HD patients and genetic mouse models suggest biphasic changes in DA neurotransmission. In the early stages, DA neurotransmission is increased leading to hyperkinetic movements that can be alleviated by depleting DA stores. In contrast, in the late stages, DA deficits produce hypokinesia that can be treated by increasing DA function. Alterations in DA neurotransmission affect glutamate receptor modulation and could contribute to excitotoxicity. The mechanisms of DA dysfunction, in particular the increased DA tone in the early stages of the disease, are presently unknown but may include initial upregulation of DA neuron activity caused by the genetic mutation, reduced inhibition resulting from striatal MSN loss, increased excitation from cortical inputs, and DA autoreceptor dysfunction. Targeting both DA and glutamate receptor dysfunction could be the best strategy to treat HD symptoms.

112 citations


Book ChapterDOI
TL;DR: The multilingual transmission of DA neurons across multiple striatal domains and the increasing insight into the role of glutamate cotransmission in the ventral striatum highlight the importance of analyzing DA neuron transmission at the synaptic level.
Abstract: The ability of dopamine (DA) neurons to release other transmitters in addition to DA itself has been increasingly recognized, hence the concept of their multilingual nature. A subset of DA neurons, mainly found in the ventral tegmental area, express VGLUT2, allowing them to package and release glutamate onto striatal spiny projection neurons and cholinergic interneurons. Some dopaminergic axon terminals release GABA. Glutamate release by DA neurons has a developmental role, facilitating axonal growth and survival, and may determine in part the critical contribution of the ventral striatum to psychostimulant-induced behavior. Vesicular glutamate coentry may have synergistic effects on vesicular DA filling. The multilingual transmission of DA neurons across multiple striatal domains and the increasing insight into the role of glutamate cotransmission in the ventral striatum highlight the importance of analyzing DA neuron transmission at the synaptic level.

110 citations


Book ChapterDOI
TL;DR: It is proposed that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability and is associated with low variability in the ventilatory pattern.
Abstract: Cardiorespiratory coupling is an encompassing term describing more than the well-recognized influences of respiration on heart rate and blood pressure. Our data indicate that cardiorespiratory coupling reflects a reciprocal interaction between autonomic and respiratory control systems, and the cardiovascular system modulates the ventilatory pattern as well. For example, cardioventilatory coupling refers to the influence of heart beats and arterial pulse pressure on respiration and is the tendency for the next inspiration to start at a preferred latency after the last heart beat in expiration. Multiple complementary, well-described mechanisms mediate respiration’s influence on cardiovascular function, whereas mechanisms mediating the cardiovascular system’s influence on respiration may only be through the baroreceptors but are just being identified. Our review will describe a differential effect of conditioning rats with either chronic intermittent or sustained hypoxia on sympathetic nerve activity but also on ventilatory pattern variability. Both intermittent and sustained hypoxia increase sympathetic nerve activity after 2 weeks but affect sympatho-respiratory coupling differentially. Intermittent hypoxia enhances sympatho-respiratory coupling, which is associated with low variability in the ventilatory pattern. In contrast, after constant hypobaric hypoxia, 1-to-1 coupling between bursts of sympathetic and phrenic nerve activity is replaced by 2-to-3 coupling. This change in coupling pattern is associated with increased variability of the ventilatory pattern. After baro-denervating hypobaric hypoxic-conditioned rats, splanchnic sympathetic nerve activity becomes tonic (distinct bursts are absent) with decreases during phrenic nerve bursts and ventilatory pattern becomes regular. Thus, conditioning rats to either intermittent or sustained hypoxia accentuates the reciprocal nature of cardiorespiratory coupling. Finally, identifying a compelling physiologic purpose for cardiorespiratory coupling is the biggest barrier for recognizing its significance. Cardiorespiratory coupling has only a small effect on the efficiency of gas exchange; rather, we propose that cardiorespiratory control system may act as weakly coupled oscillator to maintain rhythms within a bounded variability.

104 citations


Book ChapterDOI
TL;DR: A new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing.
Abstract: The cerebellum is thought to play a critical role in procedural learning, but the relationship between this function and the underlying cellular and synaptic mechanisms remains largely speculative. At present, at least nine forms of long-term synaptic and nonsynaptic plasticity (some of which are bidirectional) have been reported in the cerebellar cortex and deep cerebellar nuclei. These include long-term potentiation (LTP) and long-term depression at the mossy fiber-granule cell synapse, at the synapses formed by parallel fibers, climbing fibers, and molecular layer interneurons on Purkinje cells, and at the synapses formed by mossy fibers and Purkinje cells on deep cerebellar nuclear cells, as well as LTP of intrinsic excitability in granule cells, Purkinje cells, and deep cerebellar nuclear cells. It is suggested that the complex properties of cerebellar learning would emerge from the distribution of plasticity in the network and from its dynamic remodeling during the different phases of learning. Intrinsic and extrinsic factors may hold the key to explain how the different forms of plasticity cooperate to select specific transmission channels and to regulate the signal-to-noise ratio through the cerebellar cortex. These factors include regulation of neuronal excitation by local inhibitory networks, engagement of specific molecular mechanisms by spike bursts and theta-frequency oscillations, and gating by external neuromodulators. Therefore, a new and more complex view of cerebellar plasticity is emerging with respect to that predicted by the original "Motor Learning Theory," opening issues that will require experimental and computational testing.

100 citations


Book ChapterDOI
TL;DR: In this chapter, following a historical overview, recent intensive investigations of LTD are reviewed, complex signal transduction and receptor recycling processes underlying LTD are analyzed, and roles of LTD in reflexes and voluntary movements are defined.
Abstract: Long-term depression (LTD) here concerned is persistent attenuation of transmission efficiency from a bundle of parallel fibers to a Purkinje cell. Uniquely, LTD is induced by conjunctive activation of the parallel fibers and the climbing fiber that innervates that Purkinje cell. Cellular and molecular processes underlying LTD occur postsynaptically. In the 1960s, LTD was conceived as a theoretical possibility and in the 1980s, substantiated experimentally. Through further investigations using various pharmacological or genetic manipulations of LTD, a concept was formed that LTD plays a major role in learning capability of the cerebellum (referred to as "Marr-Albus-Ito hypothesis"). In this chapter, following a historical overview, recent intensive investigations of LTD are reviewed. Complex signal transduction and receptor recycling processes underlying LTD are analyzed, and roles of LTD in reflexes and voluntary movements are defined. The significance of LTD is considered from viewpoints of neural network modeling. Finally, the controversy arising from the recent finding in a few studies that whereas LTD is blocked pharmacologically or genetically, motor learning in awake behaving animals remains seemingly unchanged is examined. We conjecture how this mismatch arises, either from a methodological problem or from a network nature, and how it might be resolved.

92 citations


Book ChapterDOI
TL;DR: The neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology is explored to lead to a better understanding of how the authors balance emotions and how emotions become pathological.
Abstract: “Sighs, tears, grief, distress” expresses Johann Sebastian Bach in a musical example for the relationship between sighs and deep emotions. This review explores the neurobiological basis of the sigh and its relationship with psychology, physiology, and pathology. Sighs monitor changes in brain states, induce arousal, and reset breathing variability. These behavioral roles homeostatically regulate breathing stability under physiological and pathological conditions. Sighs evoked in hypoxia evoke arousal and thereby become critical for survival. Hypoarousal and failure to sigh have been associated with sudden infant death syndrome. Increased breathing irregularity may provoke excessive sighing and hyperarousal, a behavioral sequence that may play a role in panic disorders. Essential for generating sighs and breathing is the pre-Botzinger complex. Modulatory and synaptic interactions within this local network and between networks located in the brainstem, cerebellum, cortex, hypothalamus, amygdala, and the periaqueductal gray may govern the relationships between physiology, psychology, and pathology. Unraveling these circuits will lead to a better understanding of how we balance emotions and how emotions become pathological.

88 citations


Book ChapterDOI
TL;DR: This chapter presents an example how genetic dissection of an epileptic disorder can lead not only to a better understanding of disease mechanisms but also broaden knowledge about the physiological function of the affected proteins and enable novel approaches in the antiepileptic therapy design.
Abstract: Several potassium channel genes have been implicated in different neurological disorders including genetic and acquired epilepsy. Among them, KCNQ2 and KCNQ3 , coding for K V 7.2 and K V 7.3 voltage-gated potassium channels, present an example how genetic dissection of an epileptic disorder can lead not only to a better understanding of disease mechanisms but also broaden our knowledge about the physiological function of the affected proteins and enable novel approaches in the antiepileptic therapy design. In this chapter, we focus on the neuronal K V 7 channels and associated genetic disorders—channelopathies, in particular benign familial neonatal seizures, epileptic encephalopathy, and peripheral nerve hyperexcitability (neuromyotonia, myokymia) caused by KCNQ2 or KCNQ3 mutations. Furthermore, strategies using K V 7 channels as targets or tools for the treatment of epileptic diseases caused by neuronal hyperexcitability are being addressed.

82 citations


Book ChapterDOI
TL;DR: A detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling is provided, with implications for the role of learning-related dopamine signaling in addiction and related disorders.
Abstract: Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction.

Book ChapterDOI
TL;DR: The ECM emerged as a key component of synaptic plasticity, learning, and memory and as an attractive target for developing new generation of synapse plasticizing drugs.
Abstract: Neural extracellular matrix (ECM) molecules derived from neurons and glial cells accumulate in the extracellular space and regulate synaptic plasticity through modulation of perisomal GABAergic inhibition, intrinsic neuronal excitability, integrin signaling, and activities of L-type Ca(2+) channels, NMDA receptors, and Rho-associated kinase. Genetic or enzymatic targeting of ECM molecules proved to bidirectionally modulate acquisition of memories, depending on experimental conditions, and to promote cognitive flexibility and extinction of fear and drug memories. Furthermore, evidence is accumulating that dysregulation of ECM is linked to major psychiatric and neurodegenerative diseases and that targeting ECM molecules may rescue cognitive deficits in animal models of these diseases. Thus, the ECM emerged as a key component of synaptic plasticity, learning, and memory and as an attractive target for developing new generation of synapse plasticizing drugs.

Book ChapterDOI
TL;DR: Respiration is not a motor system that functions by itself, but is strongly regulated by the same systems that also control the other motor output systems.
Abstract: Respiration is a motor system essential for the survival of the individual and of the species Because of its vital significance, studies on respiration often assume that breathing takes place independent of other motor systems However, motor systems generating vocalization, coughing, sneezing, vomiting, as well as parturition, ejaculation, and defecation encompass abdominal pressure control, which involves changes in the respiratory pattern The mesencephalic periaqueductal gray (PAG) controls all these motor systems It determines the level setting of the whole body by means of its very strong projections to the ventromedial medullary tegmentum, but it also controls the cell groups that generate vocalization, coughing, sneezing, vomiting, as well as respiration For this control, the PAG maintains very strong connections with the nucleus retroambiguus, which enables it to control abdominal and intrathoracic pressure In this same context, the PAG also runs the pelvic organs, bladder, uterus, prostate, seminal vesicles, and the distal colon and rectum via its projections to the pelvic organ stimulating center and the pelvic floor stimulating center These cell groups, via long descending projections, have direct control of the parasympathetic motoneurons in the sacral cord as well as of the somatic motoneurons in the nucleus of Onuf, innervating the pelvic floor Respiration, therefore, is not a motor system that functions by itself, but is strongly regulated by the same systems that also control the other motor output systems

Book ChapterDOI
TL;DR: A review of the physiological significance of postinspiratory motor activity in laryngeal adductor (constrictor) muscles and the crural diaphragm is given in this article.
Abstract: The term postinspiration is commonly used in the scientific literature concerned with neural generation and the control of breathing movements. Because postinspiration belongs functionally to the mechanical act of expiration, the physiological significance of postinspiration as a distinct phase of the breathing cycle is often underappreciated. The present review will give an overview of the physiological significance of postinspiratory motor activity in laryngeal adductor (constrictor) muscles and the crural diaphragm. The functional importance of postinspiratory motor activity is discussed for the eupneic respiratory cycle, and for various protective respiratory reflex mediations (e.g., sneeze, cough, and breath-hold). Also, the implications of recruited postinspiratory activity during nonventilatory behaviors such as vocalization, swallowing, or vomiting are underpinned. Finally, we describe the impact of absence or malfunction of postinspiratory motor function in neurological diseases.

Book ChapterDOI
TL;DR: A large body of evidence now supports the conclusion that at least a subset of 5-HT neurons are central chemoreceptors, and principal arguments against the hypothesis are not supported by existing data.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT) neurons are widely considered to play an important role in central respiratory chemoreception Although many studies in the past decades have supported this hypothesis, there had been concerns about its validity until recently One recurring claim had been that 5-HT neurons are not consistently sensitive to hypercapnia in vivo Another belief was that 5-HT neurons do not stimulate breathing; instead, they inhibit or modulate respiratory output It was also believed by some that 5-HT neuron chemosensitivity is dependent on TASK channels, but mice with genetic deletion of TASK-1 and TASK-3 have a normal hypercapnic ventilatory response This review explains why these principal arguments against the hypothesis are not supported by existing data Despite repeated challenges, a large body of evidence now supports the conclusion that at least a subset of 5-HT neurons are central chemoreceptors

Book ChapterDOI
TL;DR: This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.
Abstract: During central nervous system development, extracellular matrix (ECM) receptors and their ligands play key roles as guidance molecules, informing neurons where and when to send axonal and dendritic projections, establish connections, and form synapses between pre- and postsynaptic cells. Once stable synapses are formed, many ECM receptors transition in function to control the maintenance of stable connections between neurons and regulate synaptic plasticity. These receptors bind to and are activated by ECM ligands. In turn, ECM receptor activation modulates downstream signaling cascades that control cytoskeletal dynamics and synaptic activity to regulate neuronal structure and function and thereby impact animal behavior. The activities of cell adhesion receptors that mediate interactions between pre- and postsynaptic partners are also strongly influenced by ECM composition. This chapter highlights a number of ECM receptors, their roles in the control of synapse structure and function, and the impact of these receptors on synaptic plasticity and animal behavior.

Book ChapterDOI
TL;DR: Recent studies show that the extracellular matrix and matrix metalloproteinases are important regulators of plasticity, learning, and memory and might be involved in different neurological disorders like epilepsy, schizophrenia, addiction, and dementia.
Abstract: An essential component of the brain extracellular space is the extracellular matrix contributing to the spatial assembly of cells by binding cell-surface adhesion molecules, supporting cell migration, differentiation, and tissue development. The most interesting and complex functions of the central nervous system are the abilities to encode new information (learning) and to store this information (memory). The creation of perineuronal nets, consisting mostly of chondroitin sulfate proteoglycans, stabilizes the synapses and memory trails and forms protective shields against neurodegenerative processes but terminates plasticity and the potential for recovery of the tissue. Age-related changes in the extracellular matrix composition and the extracellular space volume and permissivity are major determinants of the onset and development of the most common neurodegenerative disorder, Alzheimer's disease. In this regard, heparan sulfate proteoglycans, involved in amyloid clearance from the brain, play an important role in Alzheimer's disease and other types of neurodegeneration. Additional key players in the modification of the extracellular matrix are matrix metalloproteinases. Recent studies show that the extracellular matrix and matrix metalloproteinases are important regulators of plasticity, learning, and memory and might be involved in different neurological disorders like epilepsy, schizophrenia, addiction, and dementia. The identification of molecules and mechanisms that modulate these processes is crucial for the understanding of brain function and dysfunction and for the design of new therapeutic approaches targeting the molecular mechanism underlying these neurological disorders.

Book ChapterDOI
TL;DR: Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the ECM and loosening perisynaptic structures, but rather allows for releasing signaling molecules from theECM, transsynaptic proteins, and latent form of growth factors.
Abstract: Recent studies implicate extracellular proteases in synaptic plasticity, learning, and memory. The data are especially strong for such serine proteases as thrombin, tissue plasminogen activator, neurotrypsin, and neuropsin as well as matrix metalloproteinases, MMP-9 in particular. The role of those enzymes in the aforementioned phenomena is supported by the experimental results on the expression patterns (at the gene expression and protein and enzymatic activity levels) and functional studies, including knockout mice, specific inhibitors, etc. Counterintuitively, the studies have shown that the extracellular proteolysis is not responsible mainly for an overall degradation of the extracellular matrix (ECM) and loosening perisynaptic structures, but rather allows for releasing signaling molecules from the ECM, transsynaptic proteins, and latent form of growth factors. Notably, there are also indications implying those enzymes in the major neuropsychiatric disorders, probably by contributing to synaptic aberrations underlying such diseases as schizophrenia, bipolar, autism spectrum disorders, and drug addiction.

Book ChapterDOI
TL;DR: This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology.
Abstract: The olfactory system has a rich cortical representation, including a large archicortical component present in most vertebrates, and in mammals neocortical components including the entorhinal and orbitofrontal cortices. Together, these cortical components contribute to normal odor perception and memory. They help transform the physicochemical features of volatile molecules inhaled or exhaled through the nose into the perception of odor objects with rich associative and hedonic aspects. This chapter focuses on how olfactory cortical areas contribute to odor perception and begins to explore why odor perception is so sensitive to disease and pathology. Odor perception is disrupted by a wide range of disorders including Alzheimer’s disease, Parkinson’s disease, schizophrenia, depression, autism, and early life exposure to toxins. This olfactory deficit often occurs despite maintained functioning in other sensory systems. Does the unusual network of olfactory cortical structures contribute to this sensitivity?

Book ChapterDOI
TL;DR: It is suggested that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback, as well as to the processing of feedback in other parts of the nervous system.
Abstract: During learning, performance changes often involve a transition from controlled processing in which performance is flexible and responsive to ongoing error feedback, but effortful and slow, to a state in which processing becomes swift and automatic. In this state, performance is unencumbered by the requirement to process feedback, but its insensitivity to feedback reduces its flexibility. Many properties of automatic processing are similar to those that one would expect of forward models, and many have suggested that these may be instantiated in cerebellar circuitry. Since hierarchically organized frontal lobe areas can both send and receive commands, I discuss the possibility that they can act both as controllers and controlled objects and that their behaviors can be independently modeled by forward models in cerebellar circuits. Since areas of the prefrontal cortex contribute to this hierarchically organized system and send outputs to the cerebellar cortex, I suggest that the cerebellum is likely to contribute to the automation of cognitive skills, and to the formation of habitual behavior which is resistant to error feedback. An important prerequisite to these ideas is that cerebellar circuitry should have access to higher order error feedback that signals the success or failure of cognitive processing. I have discussed the pathways through which such feedback could arrive via the inferior olive and the dopamine system. Cerebellar outputs inhibit both the inferior olive and the dopamine system. It is possible that learned representations in the cerebellum use this as a mechanism to suppress the processing of feedback in other parts of the nervous system. Thus, cerebellar processes that control automatic performance may be completed without triggering the engagement of controlled processes by prefrontal mechanisms.

Book ChapterDOI
TL;DR: None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with M MP-9-specific inhibitors is initiated.
Abstract: The blood-brain barrier (BBB) is a specific structure that is composed of two basement membranes (BMs) and that contributes to the control of neuroinflammation. As long as the BBB is intact, extravasated leukocytes may accumulate between two BMs, generating vascular cuffs. Specific matrix metalloproteinases, MMP-2 and MMP-9, have been shown to cleave BBB beta-dystroglycan and to disintegrate thereby the parenchymal BM, resulting in encephalomyelitis. This knowledge has been added to the molecular basis of the REGA model to understand the pathogenesis of multiple sclerosis, and it gives further ground for the use of MMP inhibitors for the treatment of acute neuroinflammation. MMP-9 is associated with central nervous system inflammation and occurs in various forms: monomers and multimers. None of the various neurological and neuropathologic functions of MMP-9 have been associated with either molecular structure or molecular form, and therefore, in-depth structure-function studies are needed before medical intervention with MMP-9-specific inhibitors is initiated.

Book ChapterDOI
TL;DR: Increasing evidence is summarized that the extracellular matrix (ECM) of the stem cell environment is of crucial importance for the biology of this cellular compartment.
Abstract: Neural stem cells (NSCs) derive from the neuroepithelium of the neural tube, develop into radial glial cells, and recede at later developmental stages. In the adult, late descendants of these embryonic NSCs reside in discretely confined areas of the central nervous system, the stem cell niches. The best accepted canonical niches are the subventricular zone of the lateral ventricle and the subgranular zone of the dentate gyrus of the hippocampus. Stem cell niches provide a privileged environment to NSCs that supports self-renewal and maintenance of this cellular compartment. While numerous studies have highlighted the importance of transcription factors, morphogens, cytokines, and growth factors as intrinsic and extrinsic factors of stem cell regulation, less attention has been paid to the molecular micromilieu that characterizes the stem cell niches. In this chapter, we summarize increasing evidence that the extracellular matrix (ECM) of the stem cell environment is of crucial importance for the biology of this cellular compartment. A deeper understanding of the molecular composition of the ECM, the complementary receptors, and the signal transduction pathways engaged may prove highly relevant for harnessing NSCs in the context of biotechnological applications.

Book ChapterDOI
TL;DR: This chapter will review available literature that implicates the different classes of brain ECM molecules in psychiatric disorders, with a primary focus on addiction (opiates, psychostimulants, and alcohol), and compare these ECM adaptations with those implicated in schizophrenia and mood disorders.
Abstract: The extracellular matrix (ECM) has a prominent role in brain development, maturation of neural circuits, and adult neuroplasticity. This multifactorial role of the ECM suggests that processes that affect composition or turnover of ECM in the brain could lead to altered brain function, possibly underlying conditions of impaired mental health, such as neuropsychiatric or neurodegenerative disease. In support of this, in the last two decades, clinical and preclinical research provided evidence of correlations and to some degree causal links, between aberrant ECM function and neuropsychiatric disorders, the most prominent being addiction and schizophrenia. Based on these initial observations of involvement of different classes of ECM molecules (laminin, reelin, and their integrin receptors, as well as tenascins and chondroitin sulfate proteoglycans), ECM targets have been suggested as a novel entry point in the treatment of neuropsychiatric disorders. Hence, understanding how ECM molecules contribute to proper neuronal functioning and how this is dysregulated in conditions of mental illness is of pivotal importance. In this chapter, we will review available literature that implicates the different classes of brain ECM molecules in psychiatric disorders, with a primary focus on addiction (opiates, psychostimulants, and alcohol), and we will compare these ECM adaptations with those implicated in schizophrenia and mood disorders.

Book ChapterDOI
TL;DR: A paradigm which attempts to unify the various monogenic models based on decades of research is delineated, involving fast feedforward disinhibition as one common mechanism that can lead to increased tonic inhibition in the cortex and/or thalamus.
Abstract: Absence epilepsy is a common disorder that arises in childhood and can be refractory to medical treatment. Single genetic mutations in mice, at times found in patients with absence epilepsy, provide the unique opportunity to bridge the gap between dysfunction at the genetic level and pathological oscillations within the thalamocortical circuit. Interestingly, unlike other forms of epilepsy, only genes related to ion channels have so far been linked to absence phenotypes. Here, we delineate a paradigm which attempts to unify the various monogenic models based on decades of research. While reviewing the particular impact of these individual mutations, we posit a framework involving fast feedforward disinhibition as one common mechanism that can lead to increased tonic inhibition in the cortex and/or thalamus. Enhanced tonic inhibition hyperpolarizes principal cells, deinactivates T-type calcium channels, and leads to reciprocal burst firing within the thalamocortical loop. We also review data from pharmacologic and polygenic models in light of this paradigm. Ultimately, many questions remain unanswered regarding the pathogenesis of absence epilepsy.

Book ChapterDOI
TL;DR: The latest developments regarding of how the PAG controls respiration are examined, including determining the level of pain perception and many other basic motor output systems.
Abstract: Modulation of respiration is a prerequisite for survival of the individual and of the species. For example, respiration has to be adjusted in case of speech, strenuous exercise, laughing, crying, or sudden escape from danger. Respiratory centers in pons and medulla generate the basic respiratory rhythm or eupnea, but they cannot modulate breathing in the context of emotional challenges, for which they need input from higher brain centers. In simple terms, the prefrontal cortex integrates visual, auditory, olfactory, and somatosensory information and informs subcortical structures such as amygdala, hypothalamus, and finally the midbrain periaqueductal gray (PAG) about the results. The PAG, in turn, generates the final motor output for basic survival, such as setting the level of all cells in the brain and spinal cord. Best known in this framework is determining the level of pain perception. The PAG also controls heart rate, blood pressure, micturition, sexual behavior, vocalization, and many other basic motor output systems. Within this context, the PAG also changes the eupneic respiratory rhythm into a breathing pattern necessary for basic survival. This review examines the latest developments regarding of how the PAG controls respiration.

Book ChapterDOI
TL;DR: Among drugs targeting the major ECM receptors, integrins, are the anticancer peptide cilengitide and anti-integrin antibodies, which have a potential for treatment of stroke, multiple sclerosis, and AD.
Abstract: Extracellular matrix (ECM) molecules, their receptors at the cell surface, and cell adhesion molecules (CAMs) involved in cell-cell or cell-ECM interactions are implicated in processes related to major diseases of the central nervous system including Alzheimer's disease (AD), epilepsy, schizophrenia, addiction, multiple sclerosis, Parkinson's disease, and cancer. There are multiple strategies for targeting the ECM molecules and their metabolizing enzymes and receptors with antibodies, peptides, glycosaminoglycans, and other natural and synthetic compounds. ECM-targeting treatments include chondroitinase ABC, heparin/heparan sulfate-mimicking oligosaccharides, ECM cross-linking antibodies, and drugs stimulating expression of ECM molecules. The amount or activity of ECM-degrading enzymes like matrix metalloproteinases can be modulated indirectly via the regulation of endogenous inhibitors like TIMPs and RECK or at the transcriptional and translational levels using, e.g., histone deacetylase inhibitors, synthetic inhibitors like Periostat, microRNA-interfering drugs like AC1MMYR2, and natural compounds like flavonoids, epigallocatechin-3-gallate, anacardic acid, and erythropoietin. Among drugs targeting the major ECM receptors, integrins, are the anticancer peptide cilengitide and anti-integrin antibodies, which have a potential for treatment of stroke, multiple sclerosis, and AD. The latter can be also potentially treated with modulators of CAMs, such as peptide mimetics derived from L1-CAM and NCAM1.

Book ChapterDOI
TL;DR: In this article, the authors describe the cellular and circuit mechanisms of the peripheral olfactory system that underlie this process of sensory construction, emphasizing the distinct architectures and properties of the two prominent computational layers in the Olfactory bulb.
Abstract: Like other sensory systems, the olfactory system transduces specific features of the external environment and must construct an organized sensory representation from these highly fragmented inputs. As with these other systems, this representation is not accurate per se, but is constructed for utility, and emphasizes certain, presumably useful, features over others. I here describe the cellular and circuit mechanisms of the peripheral olfactory system that underlie this process of sensory construction, emphasizing the distinct architectures and properties of the two prominent computational layers in the olfactory bulb. Notably, while the olfactory system solves essentially similar conceptual problems to other sensory systems, such as contrast enhancement, activity normalization, and extending dynamic range, its peculiarities often require qualitatively different computational algorithms than are deployed in other sensory modalities. In particular, the olfactory modality is intrinsically high dimensional, and lacks a simple, externally defined basis analogous to wavelength or pitch on which elemental odor stimuli can be quantitatively compared. Accordingly, the quantitative similarities of the receptive fields of different odorant receptors (ORs) vary according to the statistics of the odor environment. To resolve these unusual challenges, the olfactory bulb appears to utilize unique nontopographical computations and intrinsic learning mechanisms to perform the necessary high-dimensional, similarity-dependent computations. In sum, the early olfactory system implements a coordinated set of early sensory transformations directly analogous to those in other sensory systems, but accomplishes these with unique circuit architectures adapted to the properties of the olfactory modality.

Book ChapterDOI
TL;DR: This mini-review shows that not only the organization of the different motor programs underlying eye, orienting, locomotor, and respiratory movements are similarly organized, but also that the basic structure of the forebrain engaged in the control of movement is conserved.
Abstract: The basic features of the vertebrate nervous system are conserved throughout vertebrate phylogeny to a much higher degree than previously thought. In this mini-review, we show that not only the organization of the different motor programs underlying eye, orienting, locomotor, and respiratory movements are similarly organized, but also that the basic structure of the forebrain engaged in the control of movement is conserved. In the lamprey, which diverged already 560 million years ago from the vertebrate line of evolution leading up to primates, the basic components of the basal ganglia are similar to those of mammals in considerable detail. Moreover, the properties of the synaptic input are similar as well as transmitters/peptides in the direct and indirect pathway throughout the basal ganglia. The membrane properties of the striatal projection neurons with D1 and D2 receptors, respectively, are also similar, as are those of the pallidal output neurons. Our evidence suggests that the basal ganglia can be subdivided into functional modules controlling different motor programs, like locomotion and eye movements. What has happened during evolution is that the number of modules has increased in parallel with a progressively more complex behavioral repertoire. For value-based decisions, the circuitry through the lateral habenulae to the dopaminergic modulator neurons is also conserved, as well as the relay inhibitory interneurons involved. The habenular input is from a pallidal glutamatergic nucleus in lamprey as well as mammals, and this nucleus in turn receives input from the striosomal compartment within striatum and also from pallium (cortex in mammals).

Book ChapterDOI
TL;DR: Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type and support further exploration of D3 ligands to treating drug addiction.
Abstract: The dopamine D3 receptor is located in the limbic area and apparently mediates selective effects on motivation to take drugs and drug-seeking behaviors, so that there has been considerable interest on the possible use of D3 receptor ligands to treat drug addiction. However, only recently selective tools allowing studying this receptor have been developed. This chapter presents an overview of findings that were presented at a symposium on the conference Dopamine 2013 in Sardinia in May 2013. Novel neurobiological findings indicate that drugs of abuse can lead to significant structural plasticity in rodent brain and that this is dependent on the availability of functional dopamine D3 autoreceptor, whose activation increased phosphorylation in the ERK pathway and in the Akt/mTORC1 pathway indicating the parallel engagement of a series of intracellular signaling pathways all involved in cell growth and survival. Preclinical findings using animal models of drug-seeking behaviors confirm that D3 antagonists have a promising profile to treat drug addiction across drugs of abuse type. Imaging the D3 is now feasible in human subjects. Notably, the development of (+)-4-propyl-9-hydroxynaphthoxazine ligand used in positron emission tomography (PET) studies in humans allows to measure D3 and D2 receptors based on the area of the brain under study. This PET ligand has been used to confirm up-regulation of D3 sites in psychostimulant users and to reveal that tobacco smoking produces elevation of dopamine at the level of D3 sites. There are now novel antagonists being developed, but also old drugs such as buspirone, that are available to test the D3 hypothesis in humans. The first results of clinical investigations are now being provided. Overall, those recent findings support further exploration of D3 ligands to treat drug addiction.

Book ChapterDOI
TL;DR: The extracellular matrix of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes and its involvement in plastic and adaptive processes of the central nervous system is highlighted.
Abstract: Neural circuits can express different forms of plasticity. So far, Hebbian synaptic plasticity was considered the most important plastic phenomenon, but over the last decade, homeostatic mechanisms gained more interest because they can explain how a neuronal network maintains stable baseline function despite multiple plastic challenges, like developmental plasticity, learning, or lesion. Such destabilizing influences can be counterbalanced by the mechanisms of homeostatic plasticity, which restore the stability of neuronal circuits. Synaptic scaling is a mechanism in which neurons can detect changes in their own firing rates through a set of molecular sensors that then regulate receptor trafficking to scale the accumulation of glutamate receptors at synaptic sites. Additional homeostatic mechanisms allow local changes in synaptic activation to generate local synaptic adaptations and network-wide changes in activity, which lead to adjustments in the balance between excitation and inhibition. The molecular pathways underlying these forms of homeostatic plasticity are currently under intense investigation, and it becomes clear that the extracellular matrix (ECM) of the brain, which surrounds individual neurons and integrates them into the tissue, is an important element in these processes. As a highly dynamic structure, which can be remodeled and degraded in an activity-dependent manner and in concerted action of neurons and glial cells, it can on one hand promote structural and functional plasticity and on the other hand stabilize neural microcircuits. This chapter highlights the composition of brain ECM with particular emphasis on perisynaptic and axonal matrix formations and its involvement in plastic and adaptive processes of the central nervous system.