scispace - formally typeset
Open AccessJournal ArticleDOI

A catalogue of biochemically diverse CRISPR-Cas9 orthologs.

Reads0
Chats0
TLDR
Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target.
Abstract
Bacterial Cas9 nucleases from type II CRISPR-Cas antiviral defence systems have been repurposed as genome editing tools. Although these proteins are found in many microbes, only a handful of variants are used for these applications. Here, we use bioinformatic and biochemical analyses to explore this largely uncharacterized diversity. We apply cell-free biochemical screens to assess the protospacer adjacent motif (PAM) and guide RNA (gRNA) requirements of 79 Cas9 proteins, thus identifying at least 7 distinct gRNA classes and 50 different PAM sequence requirements. PAM recognition spans the entire spectrum of T-, A-, C-, and G-rich nucleotides, from single nucleotide recognition to sequence strings longer than 4 nucleotides. Characterization of a subset of Cas9 orthologs using purified components reveals additional biochemical diversity, including both narrow and broad ranges of temperature dependence, staggered-end DNA target cleavage, and a requirement for long stretches of homology between gRNA and DNA target. Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases. A few bacterial Cas9 nucleases have been repurposed as genome editing tools. Here, the authors use bioinformatic and biochemical analyses to characterize 79 Cas9 proteins, revealing substantial functional diversity and thus expanding the available toolbox of RNA-programmable CRISPR-associated nucleases.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

CRISPR technologies and the search for the PAM-free nuclease

TL;DR: In this article, the authors review ongoing efforts toward realizing PAM-free nucleases through natural ortholog mining and protein engineering and address potential consequences of fully eliminating PAM recognition and instead propose an alternative nuclease repertoire covering all possible PAM sequences.
Journal ArticleDOI

The widespread IS200/IS605 transposon family encodes diverse programmable RNA-guided endonucleases

TL;DR: IscB proteins are putative nucleases encoded in a distinct family of IS200/IS605 transposons and are likely ancestors of the RNA-guided endonuclease Cas9, but the functions of IscB and its interact...
Journal ArticleDOI

The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design (review).

TL;DR: The main mechanisms of DNA metabolism (replication cycle, amplification) and the genomeediting tool CRISPR-Cas9 are purposefully discussed in order to address strategic possibility to design DNA-sensors based on immobilized DNA-enzymes.
Journal ArticleDOI

Advances and insights in the diagnosis of viral infections.

TL;DR: A comprehensive overview of molecular analytical methods has shown that the assay's sensitivity, accuracy, and suitability for virus detection depends on the choice of the number of regions in the viral open reading frame (ORF) genome sequence and the validity of the selected analytical method as mentioned in this paper.
References
More filters
Journal ArticleDOI

Basic Local Alignment Search Tool

TL;DR: A new approach to rapid sequence comparison, basic local alignment search tool (BLAST), directly approximates alignments that optimize a measure of local similarity, the maximal segment pair (MSP) score.
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

The neighbor-joining method: a new method for reconstructing phylogenetic trees.

TL;DR: The neighbor-joining method and Sattath and Tversky's method are shown to be generally better than the other methods for reconstructing phylogenetic trees from evolutionary distance data.
Journal ArticleDOI

MUSCLE: multiple sequence alignment with high accuracy and high throughput

TL;DR: MUSCLE is a new computer program for creating multiple alignments of protein sequences that includes fast distance estimation using kmer counting, progressive alignment using a new profile function the authors call the log-expectation score, and refinement using tree-dependent restricted partitioning.
Journal ArticleDOI

MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets

TL;DR: The latest version of the Molecular Evolutionary Genetics Analysis (Mega) software, which contains many sophisticated methods and tools for phylogenomics and phylomedicine, has been optimized for use on 64-bit computing systems for analyzing larger datasets.
Related Papers (5)
Trending Questions (1)
What RNA does Crispr use?

Our results expand the available toolset of RNA-programmable CRISPR-associated nucleases.