scispace - formally typeset
Open AccessJournal ArticleDOI

A review of biomass burning emissions part III: intensive optical properties of biomass burning particles

TLDR
In this article, the authors review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors, and show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets.
Abstract
. The last decade has seen tremendous advances in atmospheric aerosol particle research that is often performed in the context of climate and global change science. Biomass burning, one of the largest sources of accumulation mode particles globally, has been closely studied for its radiative, geochemical, and dynamic impacts. These studies have taken many forms including laboratory burns, in situ experiments, remote sensing, and modeling. While the differing perspectives of these studies have ultimately improved our qualitative understanding of biomass-burning issues, the varied nature of the work make inter-comparisons and resolutions of some specific issues difficult. In short, the literature base has become a milieu of small pieces of the biomass-burning puzzle. This manuscript, the second part of four, examines the properties of biomass-burning particle emissions. Here we review and discuss the literature concerning the measurement of smoke particle size, chemistry, thermodynamic properties, and emission factors. Where appropriate, critiques of measurement techniques are presented. We show that very large differences in measured particle properties have appeared in the literature, in particular with regards to particle carbon budgets. We investigate emissions uncertainties using scale analyses, which shows that while emission factors for grass and brush are relatively well known, very large uncertainties still exist in emission factors of boreal, temperate and some tropical forests. Based on an uncertainty analysis of the community data set of biomass burning measurements, we present simplified models for particle size and emission factors. We close this review paper with a discussion of the community experimental data, point to lapses in the data set, and prioritize future research topics.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Bounding the role of black carbon in the climate system: A scientific assessment

TL;DR: In this paper, the authors provided an assessment of black-carbon climate forcing that is comprehensive in its inclusion of all known and relevant processes and that is quantitative in providing best estimates and uncertainties of the main forcing terms: direct solar absorption; influence on liquid, mixed phase, and ice clouds; and deposition on snow and ice.
Journal ArticleDOI

Atmospheric aerosols: composition, transformation, climate and health effects.

TL;DR: The current state of knowledge, major open questions, and research perspectives on the properties and interactions of atmospheric aerosols and their effects on climate and human health are outlined.
Journal ArticleDOI

Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols

TL;DR: In this article, the authors show that brown carbon may severely bias measurements of atmospheric "black carbon" and "elemental carbon" over vast parts of the troposphere, especially those strongly polluted by biomass burning, where the mass concentration of C brown is high relative to that of soot carbon.
Journal ArticleDOI

Emission factors for open and domestic biomass burning for use in atmospheric models

TL;DR: This paper presented an up-to-date, comprehensive tabulation of EF for known pyrogenic species based on measurements made in smoke that has cooled to ambient temperature, but not yet undergone significant photochemical processing.
Journal ArticleDOI

Aerosol cloud precipitation interactions. Part 1. The nature and sources of cloud-active aerosols

TL;DR: In this article, the authors discuss the role of chemical composition and particle size in cloud condensation nucleation processes, and the role that the chemical composition plays in the process of cloud droplet and ice nucleation.
References
More filters
Book

Microphysics of Clouds and Precipitation

TL;DR: In this article, the authors focus on one major aspect of cloud microphysics, which involves the processes that lead to the formation of individual cloud and precipitation particles, and provide an account of the major characteristics of atmospheric aerosol particles.
Book

Aerosol Technology : Properties, Behavior, and Measurement of Airborne Particles

TL;DR: Properties of Gases Uniform Particle Motion Particle size Statistics Straight-Line Acceleration and Curvilinear Particle motion Adhesion of Particles Brownian Motion and Diffusion Thermal and Radiometric Forces Filtration Sampling and Measurement of Concentration Respiratory Deposition Coagulation Condensation and Evaporation Atmospheric Aerosols Electrical Properties Optical Properties Bulk Motion of aerosols Dust Explosions Bioaerosols Microscopic measurement of Particle Size Production of Test aerosols Appendices Index Index
Journal ArticleDOI

Emission of trace gases and aerosols from biomass burning

TL;DR: In this article, the authors present a set of emission factors for a large variety of species emitted from biomass fires, where data were not available, they have proposed estimates based on appropriate extrapolation techniques.
Journal ArticleDOI

Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations

TL;DR: In this paper, the AERONET network of ground-based radiometers were used to remotely sense the aerosol absorption and other optical properties in several key locations, and the results showed robust differentiation in both the magnitude and spectral dependence of the absorption, a property driving aerosol climate forcing.
Book

An Introduction to Combustion: Concepts and Applications

TL;DR: In this article, the second edition of the Second Edition of the first edition, the authors presented a simplified conversation equation for the solution of nonlinear flow equations for a C-H-O-N system.
Related Papers (5)

Bounding the role of black carbon in the climate system: A scientific assessment