scispace - formally typeset
Open AccessJournal ArticleDOI

A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High Diversity Species

TLDR
A procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs) is reported, which is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches.
Abstract
Advances in next generation technologies have driven the costs of DNA sequencing down to the point that genotyping-by-sequencing (GBS) is now feasible for high diversity, large genome species. Here, we report a procedure for constructing GBS libraries based on reducing genome complexity with restriction enzymes (REs). This approach is simple, quick, extremely specific, highly reproducible, and may reach important regions of the genome that are inaccessible to sequence capture approaches. By using methylation-sensitive REs, repetitive regions of genomes can be avoided and lower copy regions targeted with two to three fold higher efficiency. This tremendously simplifies computationally challenging alignment problems in species with high levels of genetic diversity. The GBS procedure is demonstrated with maize (IBM) and barley (Oregon Wolfe Barley) recombinant inbred populations where roughly 200,000 and 25,000 sequence tags were mapped, respectively. An advantage in species like barley that lack a complete genome sequence is that a reference map need only be developed around the restriction sites, and this can be done in the process of sample genotyping. In such cases, the consensus of the read clusters across the sequence tagged sites becomes the reference. Alternatively, for kinship analyses in the absence of a reference genome, the sequence tags can simply be treated as dominant markers. Future application of GBS to breeding, conservation, and global species and population surveys may allow plant breeders to conduct genomic selection on a novel germplasm or species without first having to develop any prior molecular tools, or conservation biologists to determine population structure without prior knowledge of the genome or diversity in the species.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Stacks: an analysis tool set for population genomics

TL;DR: The expanded population genomics functions in Stacks will make it a useful tool to harness the newest generation of massively parallel genotyping data for ecological and evolutionary genetics.
Journal ArticleDOI

Genome-wide genetic marker discovery and genotyping using next-generation sequencing.

TL;DR: Best practices for several NGS methods for genome-wide genetic marker development and genotyping that use restriction enzyme digestion of target genomes to reduce the complexity of the target.
Journal ArticleDOI

Development of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme Genotyping-by-Sequencing Approach

TL;DR: The GBS approach presented here provides a powerful method of developing high-density markers in species without a sequenced genome while providing valuable tools for anchoring and ordering physical maps and whole-genome shotgun sequence.
Journal ArticleDOI

Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array

TL;DR: The developed array and cluster identification algorithms provide an opportunity to infer detailed haplotype structure in polyploid wheat and will serve as an invaluable resource for diversity studies and investigating the genetic basis of trait variation in wheat.
Journal ArticleDOI

A physical, genetic and functional sequence assembly of the barley genome

Klaus F. X. Mayer, +73 more
- 29 Nov 2012 - 
TL;DR: An integrated and ordered physical, genetic and functional sequence resource that describes the barley gene-space in a structured whole-genome context and suggests that post-transcriptional processing forms an important regulatory layer.
References
More filters
Journal ArticleDOI

Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

TL;DR: A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original.
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

A rapid DNA isolation procedure for small quantities of fresh leaf tissue

TL;DR: From the kinetic data, it becomes evident that the reductive amination reaction is highly adaptive to the ammonium environment.
Journal ArticleDOI

AFLP: a new technique for DNA fingerprinting.

TL;DR: The AFLP technique provides a novel and very powerful DNA fingerprinting technique for DNAs of any origin or complexity that allows the specific co-amplification of high numbers of restriction fragments.
Journal ArticleDOI

Sequencing technologies-the next generation

TL;DR: A technical review of template preparation, sequencing and imaging, genome alignment and assembly approaches, and recent advances in current and near-term commercially available NGS instruments is presented.
Related Papers (5)