scispace - formally typeset
M

Manuel Spannagl

Researcher at Technische Universität München

Publications -  89
Citations -  23271

Manuel Spannagl is an academic researcher from Technische Universität München. The author has contributed to research in topics: Genome & Genomics. The author has an hindex of 36, co-authored 80 publications receiving 19041 citations. Previous affiliations of Manuel Spannagl include Helmholtz Zentrum München.

Papers
More filters
Journal ArticleDOI

The Sorghum bicolor genome and the diversification of grasses

TL;DR: An initial analysis of the ∼730-megabase Sorghum bicolor (L.) Moench genome is presented, placing ∼98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information.
Journal ArticleDOI

The tomato genome sequence provides insights into fleshy fruit evolution

Shusei Sato, +323 more
- 31 May 2012 - 
TL;DR: A high-quality genome sequence of domesticated tomato is presented, a draft sequence of its closest wild relative, Solanum pimpinellifolium, is compared, and the two tomato genomes are compared to each other and to the potato genome.
Journal ArticleDOI

Shifting the limits in wheat research and breeding using a fully annotated reference genome

Rudi Appels, +207 more
- 17 Aug 2018 - 
TL;DR: This annotated reference sequence of wheat is a resource that can now drive disruptive innovation in wheat improvement, as this community resource establishes the foundation for accelerating wheat research and application through improved understanding of wheat biology and genomics-assisted breeding.
Journal ArticleDOI

Genome sequencing and analysis of the model grass Brachypodium distachyon

John P. Vogel, +136 more
- 11 Feb 2010 - 
TL;DR: The high-quality genome sequence will help Brachypodium reach its potential as an important model system for developing new energy and food crops and establishes a template for analysis of the large genomes of economically important pooid grasses such as wheat.
Journal ArticleDOI

A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome

Klaus F. X. Mayer, +95 more
- 18 Jul 2014 - 
TL;DR: Insight into the genome biology of a polyploid crop provide a springboard for faster gene isolation, rapid genetic marker development, and precise breeding to meet the needs of increasing food demand worldwide.