scispace - formally typeset
Open AccessJournal ArticleDOI

An ultra-deep near-infrared spectrum of a compact quiescent galaxy at z=2.2

TLDR
In this paper, the spectrum of a typical quiescent, ultra-dense galaxy at z = 2.1865 with the Gemini Near-Infrared Spectrograph was obtained.
Abstract
Several recent studies have shown that about half of the massive galaxies at z~2 are in a quiescent phase. Moreover, these galaxies are commonly found to be ultra-compact with half-light radii of ~1 kpc. We have obtained a ~29 hr spectrum of a typical quiescent, ultra-dense galaxy at z=2.1865 with the Gemini Near-Infrared Spectrograph. The spectrum exhibits a strong optical break and several absorption features, which have not previously been detected in z>2 quiescent galaxies. Comparison of the spectral energy distribution with stellar population synthesis models implies a low star formation rate (SFR) of 1-3 Msol/yr, an age of 1.3-2.2 Gyr, and a stellar mass of ~2x10^11 Msol. We detect several faint emission lines, with emission-line ratios of [NII]/Halpha, [SII]/Halpha and [OII]/[OIII] typical of low-ionization nuclear emission-line regions. Thus, neither the stellar continuum nor the nebular emission implies active star formation. The current SFR is <1% of the past average SFR. If this galaxy is representative of compact quiescent galaxies beyond z=2, it implies that quenching of star formation is extremely efficient and also indicates that low luminosity active galactic nuclei (AGNs) could be common in these objects. Nuclear emission is a potential concern for the size measurement. However, we show that the AGN contributes <8% to the rest-frame optical emission. A possible post-starburst population may affect size measurements more strongly; although a 0.5 Gyr old stellar population can make up <10% of the total stellar mass, it could account for up to ~40% of the optical light. Nevertheless, this spectrum shows that this compact galaxy is dominated by an evolved stellar population.

read more

Citations
More filters
Journal ArticleDOI

A Highly Consistent Framework for the Evolution of the Star-Forming "Main Sequence" from z~0-6

TL;DR: In this article, the authors investigate the evolution of the star-forming galaxy (SFG) main sequence (MS) in stellar mass and star formation rate (SFR) out to z ~ 6.4 Gyr.
Journal ArticleDOI

The cluster lensing and supernova survey with hubble: an overview

TL;DR: The Cluster Lensing And Supernova Survey with Hubble (CLASH) as mentioned in this paper is a 524-orbit Multi-Cycle Treasury Program to use the gravitational lensing properties of 25 galaxy clusters to accurately constrain their mass distributions.
References
More filters
Journal ArticleDOI

Stellar population synthesis at the resolution of 2003

TL;DR: In this article, the spectral evolution of stellar populations at ages between 100,000 yr and 20 Gyr at a resolution of 3 A across the whole wavelength range from 3200 to 9500 A for a wide range of metallicities.
Journal ArticleDOI

The Luminosity function and stellar evolution

TL;DR: In this paper, the evolutionary significance of the observed luminosity function for main-sequence stars in the solar neighborhood is discussed and it is shown that stars move off the main sequence after burning about 10 per cent of their hydrogen mass and that stars have been created at a uniform rate in a solar neighborhood for the last five billion years.
Journal ArticleDOI

Galactic stellar and substellar initial mass function

TL;DR: A review of the present-day mass function and initial mass function in various components of the Galaxy (disk, spheroid, young, and globular clusters) and in conditions characteristic of early star formation is presented in this paper.
Journal ArticleDOI

On the variation of the initial mass function

TL;DR: In this paper, the uncertainty inherent in any observational estimate of the IMF is investigated by studying the scatter introduced by Poisson noise and the dynamical evolution of star clusters, and it is found that this apparent scatter reproduces quite well the observed scatter in power-law index determinations, thus defining the fundamental limit within which any true variation becomes undetectable.
Journal ArticleDOI

Star formation in galaxies along the hubble sequence

TL;DR: In this article, the authors focus on the broad patterns in the star formation properties of galaxies along the Hubble sequence and their implications for understanding galaxy evolution and the physical processes that drive the evolution.
Related Papers (5)