scispace - formally typeset
Open AccessJournal ArticleDOI

Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms

Reads0
Chats0
TLDR
13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract
Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Carbon Dioxide Sequestration A Solution to a Global Problem

TL;DR: A summary of some of the evidence linking increasing atmospheric CO 2 concentration to global warming and ocean acidification and our efforts to stem this rise though CO 2 sequestration can be found in this article.
Journal Article

Mixed responses of tropical Pacific fisheries and aquaculture to climate change : supplementary material

TL;DR: In this paper, the authors report how changes to the atmosphere-ocean are likely to affect the food webs, habitats and stocks underpinning fisheries and aquaculture across the region.
Journal ArticleDOI

pH variability and CO2 induced acidification in the North Sea

TL;DR: In this paper, a coupled carbonate system is used to simulate the temporal and spatial variability in pH across the southern North Sea as it relates to the environmental and biological processes affecting CO2, namely, photosynthesis and respiration, riverine boundary conditions and atmospheric CO2 concentrations.
Journal ArticleDOI

Climate-driven changes in the ecological stoichiometry of aquatic ecosystems.

TL;DR: In this paper, the effects of climate change on plankton stoichiometry have been investigated in lakes and oceans, and it has been shown that a high carbon-to-nutrient content provides poor-quality food for most zooplankton species, which may shift the species composition of ZOPs and higher trophic levels to less nutrient-consuming species.
References
More filters
Journal ArticleDOI

The NCEP/NCAR 40-Year Reanalysis Project

TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Journal ArticleDOI

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Journal ArticleDOI

Oceanography: anthropogenic carbon and ocean pH.

TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Related Papers (5)