scispace - formally typeset
Open AccessJournal ArticleDOI

Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms

Reads0
Chats0
TLDR
13 models of the ocean–carbon cycle are used to assess calcium carbonate saturation under the IS92a ‘business-as-usual’ scenario for future emissions of anthropogenic carbon dioxide and indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.
Abstract
Today's surface ocean is saturated with respect to calcium carbonate, but increasing atmospheric carbon dioxide concentrations are reducing ocean pH and carbonate ion concentrations, and thus the level of calcium carbonate saturation. Experimental evidence suggests that if these trends continue, key marine organisms—such as corals and some plankton—will have difficulty maintaining their external calcium carbonate skeletons. Here we use 13 models of the ocean–carbon cycle to assess calcium carbonate saturation under the IS92a 'business-as-usual' scenario for future emissions of anthropogenic carbon dioxide. In our projections, Southern Ocean surface waters will begin to become undersaturated with respect to aragonite, a metastable form of calcium carbonate, by the year 2050. By 2100, this undersaturation could extend throughout the entire Southern Ocean and into the subarctic Pacific Ocean. When live pteropods were exposed to our predicted level of undersaturation during a two-day shipboard experiment, their aragonite shells showed notable dissolution. Our findings indicate that conditions detrimental to high-latitude ecosystems could develop within decades, not centuries as suggested previously.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Cross-disciplinarity in the advance of Antarctic ecosystem research

TL;DR: The conceptual study presented here is based on a workshop initiated by the Research Programme Antarctic Thresholds - Ecosystem Resilience and Adaptation of the Scientific Committee on Antarctic Research, which focussed on challenges in identifying and applying cross-disciplinary approaches in the Antarctic.
Journal ArticleDOI

Ocean acidification and surface water carbonate production across the Paleocene-Eocene thermal maximum

TL;DR: This paper investigated the production of biogenic carbonate in surface waters by testing a method which combines fossil calcareous nannoplankton counts with taxon-specific Sr/Ca data, an indicator of coccolithophore production.
Journal ArticleDOI

The legacy of fossil fuels

TL;DR: Several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the Fossil fuel era.
Journal ArticleDOI

An automated pH-controlled culture system for laboratory-based ocean acidification experiments

TL;DR: An automated 12‐tank culture system was developed, which is capable of maintaining pH levels between 7.51 and 8.00 (local, in‐situ pH) within 0.02 pH units of target values, and was used to study the growth of the geniculate coralline alga Arthrocardia corymbosa.
References
More filters
Journal ArticleDOI

The NCEP/NCAR 40-Year Reanalysis Project

TL;DR: The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible, except that the horizontal resolution is T62 (about 210 km) as discussed by the authors.

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles.
Journal ArticleDOI

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

TL;DR: The recent completion of drilling at Vostok station in East Antarctica has allowed the extension of the ice record of atmospheric composition and climate to the past four glacial-interglacial cycles as discussed by the authors.
Journal ArticleDOI

Oceanography: anthropogenic carbon and ocean pH.

TL;DR: It is found that oceanic absorption of CO2 from fossil fuels may result in larger pH changes over the next several centuries than any inferred from the geological record of the past 300 million years.
Related Papers (5)