scispace - formally typeset
PatentDOI

Bamboo-inspired nanostructure design for flexible, foldable and twistable energy storage devices

Yongming Sun, +1 more
- 09 May 2016 - 
- Vol. 15, Iss: 6, pp 3899-3906
Reads0
Chats0
TLDR
In this paper, a flexible all-solid state supercapacitor is provided that includes a first electrode and a second electrode, where the flexible nanofiber web connects the first electrode to the second electrode.
Abstract
A flexible all-solid state supercapacitor is provided that includes a first electrode and a second electrode, and a flexible nanofiber web, where the flexible nanofiber web connects the first electrode to the second electrode, where the flexible nanofiber web includes a plurality of flexible nanofibers, where the flexible nanofiber includes a hierarchal structure of macropores, mesopores and micropores through a cross section of the flexible nanofiber, where the mesopores and the micropores form a graded pore structure, where the macropores are periodically distributed along the flexible nanaofiber and within the graded pore structure.

read more

Citations
More filters
Journal ArticleDOI

Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications

TL;DR: This work aims to provide a comprehensive overview of electrospun nanofibers, including the principle, methods, materials, and applications, and highlights the most relevant and recent advances related to the applications by focusing on the most representative examples.
Journal ArticleDOI

Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives

TL;DR: Recent progress and well-developed strategies in research designed to accomplish flexible and stretchable lithium-ion batteries and supercapacitors are reviewed.
Journal ArticleDOI

Porous One-Dimensional Nanomaterials: Design, Fabrication and Applications in Electrochemical Energy Storage.

TL;DR: This review presents an overview of porous 1D nanostructure research, from the synthesis by bottom-up and top-down approaches with rational and controllable structures, to several important electrochemical energy storage applications including lithium-ion batteries, sodium-ion lithium-sulfur batteries, lithium-oxygen batteries and supercapacitors.
Journal ArticleDOI

Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.

TL;DR: An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1.
Journal ArticleDOI

Highly Flexible, Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene

TL;DR: In this paper, a new approach to enhance PPy's capacitance and cycling stability by forming a freestanding and conductive hybrid film through intercalating polypyrrole into layered Ti3C2, a MXene material, was reported.
References
More filters
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Carbon materials for the electrochemical storage of energy in capacitors

TL;DR: In this article, different types of capacitors with a pure electrostatic attraction and/or pseudocapacitance effects are presented, and their performance in various electrolytes is studied taking into account the different range of operating voltage (1V for aqueous and 3 V for aprotic solutions).
Journal ArticleDOI

Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors

TL;DR: It is shown that graphite oxide sheets can be converted by infrared laser irradiation into porous graphene sheets that are flexible, robust, and highly conductive, and hold promise for high-power, flexible electronics.
Journal ArticleDOI

Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon

TL;DR: This work demonstrates microsupercapacitors with powers per volume that are comparable to electrolytic capacitors, capacitances that are four orders of magnitude higher, and energies per volume higher than conventional supercapacitor.
Related Papers (5)