scispace - formally typeset
Journal ArticleDOI

Biodiesel production, properties, and feedstocks

Reads0
Chats0
TLDR
This review covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biod diesel, the effects of blending biodiesel with other fuels on fuel properties, alternative uses for biod Diesel, and value-added uses of glycerol.
Abstract
Biodiesel, defined as the mono-alkyl esters of vegetable oils or animal fats, is an environmentally attractive alternative to conventional petroleum diesel fuel (petrodiesel). Produced by transesterification with a monohydric alcohol, usually methanol, biodiesel has many important technical advantages over petrodiesel, such as inherent lubricity, low toxicity, derivation from a renewable and domestic feedstock, superior flash point and biodegradability, negligible sulfur content, and lower exhaust emissions. Important disadvantages of biodiesel include high feedstock cost, inferior storage and oxidative stability, lower volumetric energy content, inferior low-temperature operability, and in some cases, higher NO x exhaust emissions. This review covers the process by which biodiesel is prepared, the types of catalysts that may be used for the production of biodiesel, the influence of free fatty acids on biodiesel production, the use of different monohydric alcohols in the preparation of biodiesel, the influence of biodiesel composition on fuel properties, the influence of blending biodiesel with other fuels on fuel properties, alternative uses for biodiesel, and value-added uses of glycerol, a co-product of biodiesel production. A particular emphasis is placed on alternative feedstocks for biodiesel production. Lastly, future challenges and outlook for biodiesel are discussed.

read more

Citations
More filters
Journal ArticleDOI

Non-edible vegetable oils: A critical evaluation of oil extraction, fatty acid compositions, biodiesel production, characteristics, engine performance and emissions production

TL;DR: The use of non-edible plant oils is very significant because of the tremendous demand for edible oils as food source as mentioned in this paper, however, edible oils’ feedstock costs are far expensive to be used as fuel.
Journal ArticleDOI

Opportunities and challenges for biodiesel fuel

TL;DR: In this article, a review of the perspectives for the biodiesel industry to thrive as an alternative fuel, while discussing opportunities and challenges of biodiesel, is presented, focusing on possible environmental and social impacts associated with biodiesel production, such as food security, land change and water source.
Journal ArticleDOI

A review on feedstocks, production processes, and yield for different generations of biodiesel

TL;DR: In this article, a comprehensive assessment of various feedstocks used for different generation biodiesel production with their advantages and disadvantages are also explained, and different production methods for biodiesel with yield calculation is also explained.
Journal ArticleDOI

Production and comparison of fuel properties, engine performance, and emission characteristics of biodiesel from various non-edible vegetable oils: A review

TL;DR: In this paper, the authors introduced some species of non-edible vegetables whose oils are potential sources of biodiesel, such as Pongamia pinnata (karanja), Calophyllum inophyllus (Polanga), Maduca indica (mahua), Hevea brasiliensis (rubber seed), Cotton seed, Simmondsia chinesnsis (Jojoba), Nicotianna tabacum (tobacco), Azadirachta indica, Linum usitatissimum (Linseed)
Journal ArticleDOI

The effects of catalysts in biodiesel production: A review

TL;DR: In this article, the effects of different catalysts used for producing biodiesel using findings available in the open literature are analyzed. And a critical review could allow identification of research areas to explore and improve the catalysts performance commonly employed in producing BDI fuel.
References
More filters
Book

Internal combustion engine fundamentals

TL;DR: In this article, the authors describe real engine flow and combustion processes, as well as engine operating characteristics and their operation, including engine design and operating parameters, engine characteristics, and operating characteristics.
Journal ArticleDOI

Biodiesel from microalgae.

TL;DR: As demonstrated here, microalgae appear to be the only source of renewable biodiesel that is capable of meeting the global demand for transport fuels.
Journal ArticleDOI

Technical aspects of biodiesel production by transesterification—a review

TL;DR: In this paper, various methods of preparation of biodiesel with different combination of oil and catalysts have been described and technical tools and processes for monitoring the transesterification reactions like TLC, GC, HPLC, GPC, 1H NMR and NIR have also been summarized.
Journal ArticleDOI

Mechanism and modeling of nitrogen chemistry in combustion

TL;DR: In this article, the mechanisms and rate parameters for the gas-phase reactions of nitrogen compounds that are applicable to combustion-generated air pollution are discussed and illustrated by comparison of results from detailed kinetics calculations with experimental data.
Journal ArticleDOI

Biodiesel processing and production

TL;DR: Biodiesel is an alternative diesel fuel that is produced from vegetable oils and animal fats, which consists of the monoalkyl esters formed by a catalyzed reaction of the triglycerides in the oil or fat with a simple monohydric alcohol.
Related Papers (5)