scispace - formally typeset
Journal ArticleDOI

Comparison of 6H-SiC, 3C-SiC, and Si for power devices

TLDR
In this paper, the drift region properties of 6H- and 3C-SiC-based Schottky rectifiers and power MOSFETs that result in breakdown voltages from 50 to 5000 V are defined.
Abstract
The drift region properties of 6H- and 3C-SiC-based Schottky rectifiers and power MOSFETs that result in breakdown voltages from 50 to 5000 V are defined. Using these values, the output characteristics of the devices are calculated and compared with those of Si devices. It is found that due to very low drift region resistance, 5000-V SiC Schottky rectifiers and power MOSFETs can deliver on-state current density of 100 A/cm/sup 2/ at room temperature with a forward drop of only 3.85 and 2.95 V, respectively. Both devices are expected to have excellent switching characteristics and ruggedness due to the absence of minority-carrier injection. A thermal analysis shows that 5000-V, 6H-, and 3C-SiC MOSFETs and Schottky rectifiers would be approximately 20 and 18 times smaller than corresponding Si devices, and that operation at higher temperatures and at higher breakdown voltages than conventional Si devices is possible. Also, a significant reduction in the die size is expected. >

read more

Citations
More filters
Journal ArticleDOI

Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies

TL;DR: In this article, the authors compare the performance of SiC, GaN, and ZnSe for high-temperature electronics and short-wavelength optical applications and conclude that SiC is the leading contender for high temperature and high power applications if ohmic contacts and interface state densities can be further improved.
Journal ArticleDOI

Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review

TL;DR: In this article, the status of SiC in terms of bulk crystal growth, unit device fabrication processes, device performance, circuits and sensors is discussed, focusing on demonstrated high-temperature applications, such as power transistors and rectifiers, turbine engine combustion monitoring, temperature sensors, analog and digital circuitry, flame detectors, and accelerometers.
Journal ArticleDOI

Material science and device physics in SiC technology for high-voltage power devices

TL;DR: In this article, the features and present status of SiC power devices are briefly described, and several important aspects of the material science and device physics of the SiC, such as impurity doping, extended and point defects, and the impact of such defects on device performance and reliability, are reviewed.
Book

Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications

TL;DR: A comprehensive introduction and up-to-date reference to SiC power semiconductor devices covering topics from material properties to applications is provided in this paper. But the authors focus on the SiC Schottky barrier diodes (SBDs) and do not provide an in-depth reference for scientists and engineers working in this field.
Journal ArticleDOI

Step-controlled epitaxial growth of SiC: High quality homoepitaxy

TL;DR: In this paper, a step-controlled epitaxial growth of silicon carbide (SiC) is proposed, which utilizes step-flow growth on off-oriented SiC{0001} substrates, and the detailed growth mechanism is discussed.
References
More filters
Proceedings Article

Physics of semiconductor devices

S. M. Sze
Journal ArticleDOI

A review of some charge transport properties of silicon

TL;DR: In this article, the present knowledge of charge transport properties in silicon, with special emphasis on their application in the design of solid-state devices, is reviewed, and most attention is devoted to experimental findings in the temperature range around 300 K and to high-field properties.
Book

Modern power devices

TL;DR: In this article, the authors introduce the concept of field effect transistors in the context of rectifier concepts and introduce a new Rectifier concept called Field Effect Transistor (FET) this article.
Journal ArticleDOI

Power semiconductor device figure of merit for high-frequency applications

TL;DR: In this paper, the authors derived the Baliga high-frequency figure of merit for power semiconductor devices operating in high frequency circuits and showed that significant performance improvement can be achieved by replacing silicon with gallium arsenide, silicon carbide, or semiconducting diamond.
Journal ArticleDOI

Measurement of the ionization rates in diffused silicon p-n junctions

TL;DR: In this paper, an improved method is presented for calculating the ionization rates αn and αp from charge multiplication measurements on diffused silicon p-n junctions, where the real impurity profile is approximated by an exponential function whose parameters are calculated from capacitance measurements; the ratio αp/αn as a function of the electric field is calculated from multiplication measurements.
Related Papers (5)