scispace - formally typeset
Open AccessJournal ArticleDOI

Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules

Reads0
Chats0
TLDR
A brief overview of deep learning methods is presented and in particular how recursive neural network approaches can be applied to the problem of predicting molecular properties, by considering an ensemble of recursive neural networks associated with all possible vertex-centered acyclic orientations of the molecular graph.
Abstract
Shallow machine learning methods have been applied to chemoinformatics problems with some success. As more data becomes available and more complex problems are tackled, deep machine learning methods may also become useful. Here, we present a brief overview of deep learning methods and show in particular how recursive neural network approaches can be applied to the problem of predicting molecular properties. However, molecules are typically described by undirected cyclic graphs, while recursive approaches typically use directed acyclic graphs. Thus, we develop methods to address this discrepancy, essentially by considering an ensemble of recursive neural networks associated with all possible vertex-centered acyclic orientations of the molecular graph. One advantage of this approach is that it relies only minimally on the identification of suitable molecular descriptors because suitable representations are learned automatically from the data. Several variants of this approach are applied to the problem of p...

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Deep learning in neural networks

TL;DR: This historical survey compactly summarizes relevant work, much of it from the previous millennium, review deep supervised learning, unsupervised learning, reinforcement learning & evolutionary computation, and indirect search for short programs encoding deep and large networks.
Proceedings Article

Gated Graph Sequence Neural Networks.

TL;DR: This work studies feature learning techniques for graph-structured inputs and achieves state-of-the-art performance on a problem from program verification, in which subgraphs need to be matched to abstract data structures.
Posted Content

Neural Message Passing for Quantum Chemistry

TL;DR: Using MPNNs, state of the art results on an important molecular property prediction benchmark are demonstrated and it is believed future work should focus on datasets with larger molecules or more accurate ground truth labels.
Proceedings Article

Convolutional networks on graphs for learning molecular fingerprints

TL;DR: In this paper, a convolutional neural network that operates directly on graphs is proposed to learn end-to-end learning of prediction pipelines whose inputs are graphs of arbitrary size and shape.
Journal ArticleDOI

Opportunities and obstacles for deep learning in biology and medicine.

TL;DR: It is found that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art.
References
More filters
Journal ArticleDOI

Gradient-based learning applied to document recognition

TL;DR: In this article, a graph transformer network (GTN) is proposed for handwritten character recognition, which can be used to synthesize a complex decision surface that can classify high-dimensional patterns, such as handwritten characters.
Journal ArticleDOI

Learning representations by back-propagating errors

TL;DR: Back-propagation repeatedly adjusts the weights of the connections in the network so as to minimize a measure of the difference between the actual output vector of the net and the desired output vector, which helps to represent important features of the task domain.
Journal ArticleDOI

Reducing the Dimensionality of Data with Neural Networks

TL;DR: In this article, an effective way of initializing the weights that allows deep autoencoder networks to learn low-dimensional codes that work much better than principal components analysis as a tool to reduce the dimensionality of data is described.
Journal ArticleDOI

A fast learning algorithm for deep belief nets

TL;DR: A fast, greedy algorithm is derived that can learn deep, directed belief networks one layer at a time, provided the top two layers form an undirected associative memory.
Journal ArticleDOI

Learning long-term dependencies with gradient descent is difficult

TL;DR: This work shows why gradient based learning algorithms face an increasingly difficult problem as the duration of the dependencies to be captured increases, and exposes a trade-off between efficient learning by gradient descent and latching on information for long periods.
Related Papers (5)