scispace - formally typeset
Journal ArticleDOI

Epigenetic events in mammalian germ-cell development: reprogramming and beyond

Reads0
Chats0
TLDR
It is shown that epigenetic modifiers have key roles in germ-cell development itself and contributes to the gene-expression programme that is required for germ- cell development, regulation of meiosis and genomic integrity.
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.

read more

Citations
More filters
Journal ArticleDOI

Single-cell RNA sequencing of mitotic-arrested prospermatogonia with DAZL::GFP chickens and revealing unique epigenetic reprogramming of chickens

TL;DR: In this article , the authors performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens, and they found that metabolic and signaling pathways were regulated.
Dissertation

Quiescence induces epigenetic changes in bovine fibroblasts and improves their reprogramming into cloned embryos

TL;DR: Quiescence induced long-term epigenetic changes, specifically H3K9me3 hypomethylation, that correlated with increased donor cell reprogrammability and significantly improved development into cloned blastocysts.
Dissertation

Identification and functional characterisation of germ line genes in human cancer cells

TL;DR: This document breaches copyright and will remove access to the work immediately, and the author will investigate the claim.
Dissertation

Post mortem studies on the human alcoholic brain: dna methylation and molecular responses

TL;DR: This thesis shows how the genome of alcoholics is deprived of DNA methylation, which is demonstrated to occur globally both in humans and in a rat model of alcohol dependence, by a technique developed during the thesis work, LUminometric Methylation Assay (LUMA).
Book ChapterDOI

Reproductive disease epigenetics

TL;DR: This chapter provides a comprehensive summary of the role of epigenetics in reproductive diseases with a particular impact being noted in the systems (male and female) of reproduction.
References
More filters
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

Generation of germline-competent induced pluripotent stem cells

TL;DR: iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Journal ArticleDOI

In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state

TL;DR: The results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.
Journal ArticleDOI

Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility

TL;DR: The ability of an environmental factor to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.
Journal ArticleDOI

Environmental epigenomics and disease susceptibility.

TL;DR: An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility and recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype.
Related Papers (5)