scispace - formally typeset
Journal ArticleDOI

Epigenetic events in mammalian germ-cell development: reprogramming and beyond

Reads0
Chats0
TLDR
It is shown that epigenetic modifiers have key roles in germ-cell development itself and contributes to the gene-expression programme that is required for germ- cell development, regulation of meiosis and genomic integrity.
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.

read more

Citations
More filters
Journal ArticleDOI

Cryptorchidism, gonocyte development, and the risks of germ cell malignancy and infertility: A systematic review.

TL;DR: The results of this review strengthen the view that malignancy and infertility in men with previous UDT may be caused by abnormalities in germ cell development during minipuberty.
Journal ArticleDOI

Cannabinoid Receptors Signaling in the Development, Epigenetics, and Tumours of Male Germ Cells.

TL;DR: The role of cannabinoid receptors CB1 and CB2 signaling in male germ cells development from gonocyte up to mature spermatozoa and in the induction of epigenetic alterations in these cells which might be transmitted to the progeny are focused on.
Journal ArticleDOI

The dynamics of DNA methylation during epigenetic reprogramming of primordial germ cells in medaka (Oryzias latipes)

TL;DR: The present results suggest that medaka PGCs undergo a bi-phasic epigenetic reprogramming process, and provide important insights into the developmental window of susceptibility to environmental stressors for multi- and trans-generational health outcomes in fish.
Journal ArticleDOI

Epigenetics of reproductive infertility.

TL;DR: This review is devoted to elucidate the recent mechanistic advances in regulation of genes by epigenetic modification and emphasizes their possible role related to reproductive infertility.
Journal ArticleDOI

Pharmaco-epigenomics: discovering therapeutic approaches and biomarkers for cancer therapy.

TL;DR: How insights into the epigenetic processes underpinning tumor biology have led to the emerging field of cancer pharmaco-epigenomics are highlighted and how epigenetic markers in cancer may increasingly be used as complementary diagnostic tools, prognostic markers of disease progression, and predictive markers of treatment response are discussed.
References
More filters
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

Generation of germline-competent induced pluripotent stem cells

TL;DR: iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Journal ArticleDOI

In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state

TL;DR: The results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.
Journal ArticleDOI

Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility

TL;DR: The ability of an environmental factor to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.
Journal ArticleDOI

Environmental epigenomics and disease susceptibility.

TL;DR: An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility and recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype.
Related Papers (5)