scispace - formally typeset
Journal ArticleDOI

Epigenetic events in mammalian germ-cell development: reprogramming and beyond

Reads0
Chats0
TLDR
It is shown that epigenetic modifiers have key roles in germ-cell development itself and contributes to the gene-expression programme that is required for germ- cell development, regulation of meiosis and genomic integrity.
Abstract
The epigenetic profile of germ cells, which is defined by modifications of DNA and chromatin, changes dynamically during their development. Many of the changes are associated with the acquisition of the capacity to support post-fertilization development. Our knowledge of this aspect has greatly increased- for example, insights into how the re-establishment of parental imprints is regulated. In addition, an emerging theme from recent studies is that epigenetic modifiers have key roles in germ-cell development itself--for example, epigenetics contributes to the gene-expression programme that is required for germ-cell development, regulation of meiosis and genomic integrity. Understanding epigenetic regulation in germ cells has implications for reproductive engineering technologies and human health.

read more

Citations
More filters
Journal ArticleDOI

Germline specification and function in plants

TL;DR: The flowering plant germline is produced during the haploid gametophytic stage and is marked by production of small RNAs, and recent evidence indicates that this trait might be shared with the plant gamete lineage.
Journal ArticleDOI

Assisted reproduction treatment and epigenetic inheritance

TL;DR: At the level of genomic imprinting involving CpG methylation, ART-induced epigenetic defects are convincingly observed in mice, especially for placenta, and seem more frequent than in humans.
Journal ArticleDOI

microRNAs in heart disease: putative novel therapeutic targets?

TL;DR: The biogenesis and mechanism of action of miRs are outlined, and their relevance to heart biology, pathology, and medicine is discussed.
Journal ArticleDOI

Parallel mechanisms of epigenetic reprogramming in the germline

TL;DR: It is proposed that the epigenetic programme in PGCs operates through multiple parallel mechanisms to ensure robustness at the level of individual cells while also being flexible through functional redundancy to guarantee high fidelity of the process.
Journal ArticleDOI

Keeping active endogenous retroviral-like elements in check: the epigenetic perspective.

TL;DR: In this article, the authors discuss epigenetic mechanisms of ERV and LTR retrotransposon control during mouse development, focusing on involvement of DNA methylation, histone modifications, small RNAs and their interaction with one another.
References
More filters
Journal ArticleDOI

A Bivalent Chromatin Structure Marks Key Developmental Genes in Embryonic Stem Cells

TL;DR: It is proposed that bivalent domains silence developmental genes in ES cells while keeping them poised for activation, highlighting the importance of DNA sequence in defining the initial epigenetic landscape and suggesting a novel chromatin-based mechanism for maintaining pluripotency.
Journal ArticleDOI

Generation of germline-competent induced pluripotent stem cells

TL;DR: iPS cells competent for germline chimaeras can be obtained from fibroblasts, but retroviral introduction of c-Myc should be avoided for clinical application.
Journal ArticleDOI

In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state

TL;DR: The results show that the biological potency and epigenetic state of in-vitro-reprogrammed induced pluripotent stem cells are indistinguishable from those of ES cells.
Journal ArticleDOI

Epigenetic Transgenerational Actions of Endocrine Disruptors and Male Fertility

TL;DR: The ability of an environmental factor to reprogram the germ line and to promote a transgenerational disease state has significant implications for evolutionary biology and disease etiology.
Journal ArticleDOI

Environmental epigenomics and disease susceptibility.

TL;DR: An increasing body of evidence from animal studies supports the role of environmental epigenetics in disease susceptibility and recent studies have demonstrated for the first time that heritable environmentally induced epigenetic modifications underlie reversible transgenerational alterations in phenotype.
Related Papers (5)