scispace - formally typeset
Journal ArticleDOI

Full-Color Inorganic Carbon Dot Phosphors for White-Light-Emitting Diodes

TLDR
In this paper, the authors proposed an approach toward realization of full-color emissive CDots from two common precursors, citric acid and urea, through employing three different solvents (water, glycerol, and dimethylformamide) and their combinations in a solvothermal synthesis.
Abstract
Light-emitting carbon dots (CDots) are widely investigated due to their distinct merits. However, it is still a challenge to modulate their bandgap emissions and conquer their aggregation-induced luminescence quenching to achieve full-color highly emissive CDot-based phosphors. Herein, this study proposes an approach toward realization of full-color emissive CDots from two common precursors, citric acid and urea, through employing three different solvents (water, glycerol, and dimethylformamide) and their combinations in a solvothermal synthesis. Employing sodium silicate solution, this study further demonstrates the microwave-assisted method allowing to incorporate CDots into a silica network, which effectively prevents aggregation of CDots and results in strongly luminescent full-color inorganic CDot phosphors with photoluminescence quantum yields of 30–40%. Through deposition of the red- and green-emitting CDot phosphors on blue-emitting InGaN chips, white-light-emitting diodes are fabricated with Commission Internationale de L'Eclairage of (0.34, 0.31) and the color rendering index of 82.4, indicating their promising application for solid-state lighting.

read more

Citations
More filters
Journal ArticleDOI

Graphene quantum dots from chemistry to applications

TL;DR: GQDs are considered new kind of quantum dots (QDs), as they are chemically and physically stable because of its intrinsic inert carbon property as discussed by the authors, and they are environmentally friendly due to its non-toxic and biologically inert properties.
Journal ArticleDOI

A Magnetofluorescent Carbon Dot Assembly as an Acidic H 2 O 2 -Driven Oxygenerator to Regulate Tumor Hypoxia for Simultaneous Bimodal Imaging and Enhanced Photodynamic Therapy

TL;DR: The collective properties of the Mn‐CD assembly enable it to be utilized as an acidic H2O2‐driven oxygenerator to increase the oxygen concentration in hypoxic solid tumors for simultaneous bimodal FL/MR imaging and enhanced PDT.
Journal ArticleDOI

Near-Infrared Excitation/Emission and Multiphoton-Induced Fluorescence of Carbon Dots.

TL;DR: This study represents the realization of both NIR-I excitation and emission as well as two-photon- and three- photon-induced fluorescence of CDs excited in an Nir-II window, and provides a rational design approach for construction and clinical applications of CD-based NIR imaging agents.
Journal ArticleDOI

Solvent-Controlled Synthesis of Highly Luminescent Carbon Dots with a Wide Color Gamut and Narrowed Emission Peak Widths.

TL;DR: A series of CDs with tunable emission from 443 to 745 nm, quantum yield within 13-54%, and narrowed full width at half maximum (FWHM) from 108 to 55 nm, are obtained by only adjusting the reaction solvents in a one-pot solvothermal route.
Journal ArticleDOI

Full-color fluorescent carbon quantum dots

TL;DR: The universal electron-donating/withdrawing group engineering approach for synthesizing tunable emissive CQDs will facilitate the progress of carbon-based luminescent materials for manufacturing forward-looking films and devices.
References
More filters
Journal ArticleDOI

Quantum-sized carbon dots for bright and colorful photoluminescence.

TL;DR: It is reported that nanoscale carbon particles (carbon dots) upon simple surface passivation are strongly photoluminescent in both solution and the solid state.
Journal ArticleDOI

Carbon quantum dots and their applications

TL;DR: The progress in the research and development of CQDs is reviewed with an emphasis on their synthesis, functionalization and technical applications along with some discussion on challenges and perspectives in this exciting and promising field.
Journal ArticleDOI

Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism.

TL;DR: Carbon dots with tunable photoluminescence (PL) and a quantum yield of up to 35% in water were hydrothermally synthesized in one pot and separated via silica column chromatography, and these separated CDs emitted bright and stable luminescence in gradient colors under a single-wavelength UV light.
Journal ArticleDOI

A Biocompatible Fluorescent Ink Based on Water-Soluble Luminescent Carbon Nanodots

TL;DR: Carbon nanodots (C-dots) are fascinating carbon material that are attracting increasing interest because they possess distinct benefits, such as chemical inertness, a lack of opticalblinking, low photobleaching, low cytotoxicity, and excellent biocompatibility.
Related Papers (5)