scispace - formally typeset
Open AccessJournal ArticleDOI

Grain Boundary Engineering for Achieving High Thermoelectric Performance in n-Type Skutterudites

TLDR
In this paper, a liquid phase compaction method is used to fabricate low-angle grain boundaries with dense dislocation arrays, which shows the typical feature of lowangle grain boundary with denser dislocation array.
Abstract
Grain or phase boundaries play a critical role in the carrier and phonon transport in bulk thermoelectric materials. Previous investigations about controlling boundaries primarily focused on the reducing grain size or forming nanoinclusions. Herein, liquid phase compaction method is first used to fabricate the Yb-filled CoSb3 with excess Sb content, which shows the typical feature of low-angle grain boundaries with dense dislocation arrays. Seebeck coefficients show a dramatic increase via energy filtering effect through dislocation arrays with little deterioration on the carrier mobility, which significantly enhances the power factor over a broad temperature range with a high room-temperature value around 47 μW cm−2 K−1. Simultaneously, the lattice thermal conductivity could be further suppressed via scattering phonons via dense dislocation scattering. As a result, the highest average figure of merit ZT of ≈1.08 from 300 to 850 K could be realized, comparable to the best reported result of single or triple-filled Skutterudites. This work clearly points out that low-angle grain boundaries fabricated by liquid phase compaction method could concurrently optimize the electrical and thermal transport properties leading to an obvious enhancement of both power factor and ZT.

read more

Citations
More filters
Journal ArticleDOI

Thermoelectric properties of silicon and recycled silicon sawing waste

TL;DR: In this paper, the thermoelectric properties of various silicon-related materials with respect to their morphologies and microstructures were reviewed and the power factor of silicon sawing wastes recycled from silicon wafer manufacturing was obtained.
Journal ArticleDOI

Design of segmented high-performance thermoelectric generators with cost in consideration

TL;DR: In this paper, state-of-the-art thermoelectric (TE) materials working between 300k and 1000k were cautiously selected, including materials in categories of Chalcogenides, SiGe alloy, Skutterudites and Half-Heuslers.
Journal ArticleDOI

Collective Effect of Fe and Se To Improve the Thermoelectric Performance of Unfilled p-Type CoSb3 Skutterudites

TL;DR: In this article, the authors reported a state-of-the-art thermoelectric figure of merit (ZT) in rare-earth-free p-type unfilled CoSb3 skutterudite co-doped with Fe and Se, synthesized using a facile process of arc melting and spark plasma sintering.
Journal ArticleDOI

High-Performance Solution-Processable Flexible SnSe Nanosheet Films for Lower Grade Waste Heat Recovery

TL;DR: In this paper, the authors focus on improving thermoelectric energy efficiency and identifying new records of thermodynamic properties of these materials, as defined through the concept of increased temperature.
References
More filters
Journal ArticleDOI

Complex thermoelectric materials.

TL;DR: A new era of complex thermoelectric materials is approaching because of modern synthesis and characterization techniques, particularly for nanoscale materials, and the strategies used to improve the thermopower and reduce the thermal conductivity are reviewed.
Book

Electronic processes in non-crystalline materials

TL;DR: The Fermi Glass and the Anderson Transition as discussed by the authorsermi glass and Anderson transition have been studied in the context of non-crystalline Semiconductors, such as tetrahedrally-bonded semiconductors.
Journal ArticleDOI

Opportunities and challenges for a sustainable energy future

TL;DR: This Perspective provides a snapshot of the current energy landscape and discusses several research and development opportunities and pathways that could lead to a prosperous, sustainable and secure energy future for the world.
Journal ArticleDOI

High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys

TL;DR: Electrical transport measurements, coupled with microstructure studies and modeling, show that the ZT improvement is the result of low thermal conductivity caused by the increased phonon scattering by grain boundaries and defects, which makes these materials useful for cooling and power generation.
Related Papers (5)